Phenylboronic Acid-conjugated Exosomes for Enhanced Anticancer Therapeutic Effect by Increasing Doxorubicin Loading Efficiency

Abstract

Anticancer drugs, including doxorubicin (DOX), have been widely used for cancer treatment, but these chemotherapeutic drugs have some issues to address because of their associated side effects, such as cytotoxicity. Various synthetic delivery vehicles for anticancer drugs have been developed to encapsulate and transfer them to cancer cells. However, these delivery vehicles also have high cytotoxicity and immunogenicity. Recently, exosomes have been highlighted as candidates for anticancer drug delivery vehicles with fewer side effects. Exosomes are nanosized particles that are produced from cells, and high concentrations of exosomes are already present in the human body. To develop exosome-based anticancer therapeutics, high drug concentrations should be loaded into exosomes. In this context, phenylboronic acid (PBA) was introduced and chemically conjugated to the exosome surface to load DOX to exosomes. Consequently, a high amount of DOX was efficiently loaded onto the PBA-conjugated exosomes. The DOX-loaded PBA-conjugated exosomes were applied to MDA-MB-231 breast cancer cells and showed enhanced cancer cell cytotoxicity compared to free DOX and DOX-loaded non-conjugated exosomes. Therefore, using PBA-conjugated exosomes for delivering DOX to cancer cells can be a promising strategy for effectively killing cancer cells because a high amount of DOX can be loaded and delivered.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Liu, Z., A. C. Fan, K. Rakhra, S. Sherlock, A. Goodwin, X. Chen, Q. Yang, D. W. Felsher, and H. Dai (2009) Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew. Chem. Int. Ed. Engl. 48: 7668–7672.

    CAS  Article  Google Scholar 

  2. 2.

    Takemura, G. and H. Fujiwara (2007) Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog. Cardiovasc. Dis. 49: 330–352.

    CAS  Article  Google Scholar 

  3. 3.

    Davis, M. E., Z. G. Chen, and D. M. Shin (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7: 771–782.

    CAS  Article  Google Scholar 

  4. 4.

    Peer, D., J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, and R. Langer (2007) Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2: 751–760.

    CAS  Article  Google Scholar 

  5. 5.

    Tahover, E., Y. P. Patil, and A. A. Gabizon (2015) Emerging delivery systems to reduce doxorubicin cardiotoxicity and improve therapeutic index: focus on liposomes. Anticancer Drugs. 26: 241–258.

    CAS  Article  Google Scholar 

  6. 6.

    Kirtane, A. R., R. Langer, and G. Traverso (2016) Past, present, and future drug delivery systems for antiretrovirals. J. Pharm. Sci. 105: 3471–3482.

    CAS  Article  Google Scholar 

  7. 7.

    Omolo, C. A., R. S. Kalhapure, M. Jadhav, S. Rambharose, C. Mocktar, V. M. K. Ndesendo, and T. Govender (2016) Pegylated oleic acid: A promising amphiphilic polymer for nano-antibiotic delivery. Eur. J. Pharm. Biopharm. 112: 96–108.

    Article  Google Scholar 

  8. 8.

    Yang, X., J. Tong, L. Guo, Z. Qian, Q. Chen, R. Qi, and Y. Qiu (2017) Bundling potent natural toxin cantharidin within platinum (IV) prodrugs for liposome drug delivery and effective malignant neuroblastoma treatment. Nanomedicine. 13: 287–296.

    CAS  Article  Google Scholar 

  9. 9.

    Ying, M., C. Zhan, S. Wang, B. Yao, X. Hu, X. Song, M. Zhang, X. Wei, Y. Xiong, and W. Lu (2016) Liposome-based systemic glioma-targeted drug delivery enabled by all-d peptides. ACS Appl. Mater. Interfaces. 8: 29977–29985.

    CAS  Article  Google Scholar 

  10. 10.

    Lane, R. E., D. Korbie, W. Anderson, R. Vaidyanathan, and M. Trau (2015) Analysis of exosome purification methods using a model liposome system and tunable-resistive pulse sensing. Sci. Rep. 5: 7639.

    Article  Google Scholar 

  11. 11.

    Schageman, J., E. Zeringer, M. Li, T. Barta, K. Lea, J. Gu, S. Magdaleno, R. Setterquist, and A. V. Vlassov (2013) The complete exosome workflow solution: from isolation to characterization of RNA Cargo. Biomed. Res. Int. 2013: 253957.

    Article  Google Scholar 

  12. 12.

    Dragovic, R. A., C. Gardiner, A. S. Brooks, D. S. Tannetta, D. J. P. Ferguson, P. Hole, B. Carr, C. W. G. Redman, A. L. Harris, P. J. Dobson, P. Harrison, and I. L. Sargent (2011) Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine. 7: 780–788.

    CAS  Article  Google Scholar 

  13. 13.

    Cho, S., H. C. Yang, and W. J. Rhee (2019) Simultaneous multiplexed detection of exosomal microRNAs and surface proteins for prostate cancer diagnosis. Biosens. Bioelectron. 146: 111749.

    CAS  Article  Google Scholar 

  14. 14.

    Lee, J. H., J. A. Kim, S. Jeong, and W. J. Rhee (2016) Simultaneous and multiplexed detection of exosome microRNAs using molecular beacons. Biosens. Bioelectron. 86: 202–210.

    CAS  Article  Google Scholar 

  15. 15.

    Lee, J. H., J. A. Kim, M. H. Kwon, J. Y. Kang, and W. J. Rhee (2015) In situ single step detection of exosome microRNA using molecular beacon. Biomaterials. 54: 116–125.

    CAS  Article  Google Scholar 

  16. 16.

    Patil, A. A. and W. J. Rhee (2019) Exosomes: biogenesis, composition, functions, and their role in pre-metastatic niche formation. Biotechnol. Bioprocess Eng. 24: 689–701.

    CAS  Article  Google Scholar 

  17. 17.

    Jeong, K., S. Jeong, J. A. Kim, and W. J. Rhee (2019) Exosome-based antisense locked nucleic acid delivery for inhibition of type II collagen degradation in chondrocyte. J. Ind. Eng. Chem. 74: 126–135.

    CAS  Article  Google Scholar 

  18. 18.

    Han, S. and W. J. Rhee (2018) Inhibition of apoptosis using exosomes in Chinese hamster ovary cell culture. Biotechnol. Bioengin. 115: 1331–1339.

    CAS  Article  Google Scholar 

  19. 19.

    Kim, Y. G., U. Park, B. J. Park, K. Kim (2019) Exosome-mediated bidirectional signaling between mesenchymal stem cells and chondrocytes for enhanced chondrogenesis. Biotechnol. Bioprocess Eng. 24: 734–744.

    CAS  Article  Google Scholar 

  20. 20.

    Kim, H. and W. J. Rhee (2020) Exosome-mediated let7c-5p delivery for breast cancer therapeutic development. Biotechnol. Bioprocess Eng. 25: 513–520.

    CAS  Article  Google Scholar 

  21. 21.

    Yang, T., P. Martin, B. Fogarty, A. Brown, K. Schurman, R. Phipps, V. P. Yin, P. Lockman, and S. Bai (2015) Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm. Res. 32: 2003–2014.

    CAS  Article  Google Scholar 

  22. 22.

    Lai, R. C., R. W. Y. Yeo, K. H. Tan, and S. K. Lim (2013) Exosomes for drug delivery — a novel application for the mesenchymal stem cell. Biotechnol. Adv. 31: 543–551.

    CAS  Article  Google Scholar 

  23. 23.

    Schindler, C., A. Collinson, C. Matthews, A. Pointon, L. Jenkinson, R. R. Minter, T. J. Vaughan, and N. J. Tigue (2019) Exosomal delivery of doxorubicin enables rapid cell entry and enhanced in vitro potency. PLoS One. 14: e0214545.

    CAS  Article  Google Scholar 

  24. 24.

    Zhang, J., X. Wang, J. Wen, X. Su, L. Weng, C. Wang, Y. Tian, Y. Zhang, J. Tao, P. Xu, G. Lu, Z. Teng, and L. Wang (2019) Size effect of mesoporous organosilica nanoparticles on tumor penetration and accumulation. Biomater. Sci. 7: 4790–4799.

    CAS  Article  Google Scholar 

  25. 25.

    Andersen, K. A., T. P. Smith, J. E. Lomax, and R. T. Raines (2016) Boronic acid for the traceless delivery of proteins into cells. ACS Chem. Biol. 11: 319–323.

    CAS  Article  Google Scholar 

  26. 26.

    Wang, X., H. Tang, C. Wang, J. Zhang, W. Wu, and X. Jiang (2016) Phenylboronic acid-mediated tumor targeting of chitosan nanoparticles. Theranostics. 6: 1378–1392.

    CAS  Article  Google Scholar 

  27. 27.

    Lee, J., J. Kim, Y. M. Lee, D. Park, S. Im, E. H. Song, H. Park, and W. J. Kim (2017) Self-assembled nanocomplex between polymerized phenylboronic acid and doxorubicin for efficient tumor-targeted chemotherapy. Acta Pharmacol. Sin. 38: 848–858.

    CAS  Article  Google Scholar 

  28. 28.

    Luo, C. Q., L. Xing, P. F. Cui, J. B. Qiao, Y. J. He, B. A. Chen, L. Jin, and H. L. Jiang (2017) Curcumin-coordinated nanoparticles with improved stability for reactive oxygen species-responsive drug delivery in lung cancer therapy. Int. J. Nanomedicine. 12: 855–869.

    CAS  Article  Google Scholar 

  29. 29.

    Lee, J. Y., S. J. Chung, H. J. Cho, and D. D. Kim (2015) Phenylboronic acid-decorated chondroitin sulfate A-based theranostic nanoparticles for enhanced tumor targeting and penetration. Adv. Funct. Mater. 25: 3705–3717.

    CAS  Article  Google Scholar 

  30. 30.

    Toffoli, G., M. Hadla, G. Corona, I. Caligiuri, S. Palazzolo, S. Semeraro, A. Gamini, V. Canzonieri, and F. Rizzolio (2015) Exosomal doxorubicin reduces the cardiac toxicity of doxorubicin. Nanomedicine. 10: 2963–2971.

    CAS  Article  Google Scholar 

  31. 31.

    Hadla, M., S. Palazzolo, G. Corona, I. Caligiuri, V. Canzonieri, G. Toffoli, and F. Rizzolio (2016) Exosomes increase the therapeutic index of doxorubicin in breast and ovarian cancer mouse models. Nanomedicine. 11: 2431–2441.

    CAS  Article  Google Scholar 

  32. 32.

    Otsuka, H., E. Uchimura, H. Koshino, T. Okano, and K. Kataoka (2003) Anomalous binding profile of phenylboronic acid with N-acetylneuraminic acid (Neu5Ac) in aqueous solution with varying pH. J. Am. Chem. Soc. 125: 3493–3502.

    CAS  Article  Google Scholar 

  33. 33.

    Deshayes, S., H. Cabral, T. Ishii, Y. Miura, S. Kobayashi, T. Yamashita, A. Matsumoto, Y. Miyahara, N. Nishiyama, and K. Kataoka (2013) Phenylboronic acid-installed polymeric micelles for targeting sialylated epitopes in solid tumors. J. Am. Chem. Soc. 135: 15501–15507.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Incheon National University Research Grant in 2017.

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Won Jong Rhee.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Kang, S.J. & Rhee, W.J. Phenylboronic Acid-conjugated Exosomes for Enhanced Anticancer Therapeutic Effect by Increasing Doxorubicin Loading Efficiency. Biotechnol Bioproc E 26, 78–85 (2021). https://doi.org/10.1007/s12257-020-0107-5

Download citation

Keywords

  • doxorubicin
  • anticancer drug
  • delivery vehicles
  • exosome
  • phenylboronic acid