An Enhancement of Antibacterial Activity and Synergistic Effect of Biosynthesized Silver Nanoparticles by Eurotium cristatum with Various Antibiotics

Abstract

In this study, biosynthesis of silver nanoparticles (AgNPs) by using Eurotium cristatum, isolated from Fuzhuan brick-tea and its antibacterial activity has been demonstrated. AgNPs were characterized at 425 nm as maximum absorbance peak by ultraviolet-visible spectrophotometry. The images of transmission electron microscopy revealed that AgNPs are spherical shape with at 15–20 nm in size. The X-ray diffraction pattern corresponding to planes (111), (200), (220), (311), and (222) demonstrated the crystalline nature of AgNPs. Fourier transform infrared spectrum showed that functional groups involved in reduction of silver ions to metal nanoparticles. For antibacterial application, AgNPs showed antibacterial activity against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Candida albicans, and Bacillus subtilis. It also acted synergistically with various antibiotics to inhibit growth of pathogenic strains, which produced an effect greater than the sum of their individual effects. For neomycin with no resistance to C. albicans, it combined with AgNPs, which had significant synergistic effect against C. albicans, with maximum inhibitory zone at 20.9 mm, which was 2.5-fold greater than that of AgNPs alone (8.2 mm). Other antibiotics combined with AgNPs also existed similar synergistic effect. Therefore, AgNPs-synthesized by E. cristatum could enhance antibacterial activity in combination with antibiotics against pathogenic strains through synergistic effects. It might provide a new strategy for treatment of resistant bacteria.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Taylor, R., S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi (2013) Small particles, big impacts: a review of the diverse applications of nanofluids. J. Appl. Phys. 113: 011301.

    Article  Google Scholar 

  2. 2.

    Simi, C. K. and T. E. Abraham (2007) Hydrophobic grafted and cross-linked starch nanoparticles for drug delivery. Bioprocess Biosyst. Eng. 30: 173–180.

    CAS  Article  Google Scholar 

  3. 3.

    Veerasamy, R., T. Z. Xin, S. Gunasagaran, T. F. W. Xiang, E. F. C. Yang, N. Jeyakumar, and S. A. Dhanaraj (2011) Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J. Saudi Chem. Soc. 15: 113–120.

    CAS  Article  Google Scholar 

  4. 4.

    Ahmed, S., M. Ahmad, B. L. Swami, and S. Ikram (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J. Adv. Res. 7: 17–28.

    CAS  Article  Google Scholar 

  5. 5.

    Baker, S., K. M. Kumar, P. Santosh, D. Rakshith, and S. Satish (2015) Extracellular synthesis of silver nanoparticles by novel Pseudomonas veronii AS41G inhabiting Annona squamosa L. and their bactericidal activity. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 136: 1434–1440.

    CAS  Article  Google Scholar 

  6. 6.

    Klaus, T., R. Joerger, E. Olsson, and C. G. Granqvist (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. USA. 96: 13611–13614.

    CAS  Article  Google Scholar 

  7. 7.

    Sadeghi, B. and F. Gholamhoseinpoor (2015) A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 134: 310–315.

    CAS  Article  Google Scholar 

  8. 8.

    Medina-Ramirez, I., S. Bashir, Z. Luo, and J. L. Liu (2009) Green synthesis and characterization of polymer-stabilized silver nanoparticles. Colloids Surf. B. Biointerfaces. 73: 185–191.

    CAS  Article  Google Scholar 

  9. 9.

    Nalawade, P., P. Mukherjee, and S. Kapoor (2014) Biosynthesis, characterization and antibacterial studies of silver nanoparticles using pods extract ofAcacia auriculiformis. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 129: 121–124.

    CAS  Article  Google Scholar 

  10. 10.

    Sunkar, S. and C. V. Nachiyar (2012) Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus.Asian Pac. J. Trop. Biomed. 2: 953–959.

    CAS  Article  Google Scholar 

  11. 11.

    Yan, Z. F., J. Guo, Y. Yang, N. X. Liu, F. H. Tian, C. T. Li, and Y. Li (2016) Identification and physiological characteristics in cultivation of fungal strain MJAU EC021 isolated from brick tea. Microbiol. China. 43: 310–321.

    Google Scholar 

  12. 12.

    Burygin, G. L., B. N. Khlebtsov., A. N. Shantrokha., L. A. Dykman., V. A. Bogatyrev., and N. G. Khlebtsov (2009) On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles. Nanoscale. Res. Lett. 4: 794–801.

    CAS  Article  Google Scholar 

  13. 13.

    Peng, Y., Z. Xiong, J. Li, J. A. Huang, C. Teng, Y. Gong, and Z. Liu (2014) Water extract of the fungi from Fuzhuan brick tea improves the beneficial function on inhibiting fat deposition. Int. J. Food Sci. Nutr. 65: 610–614.

    Article  Google Scholar 

  14. 14.

    Li, W. R., T. L. Sun, S. L. Zhou, Y. K. Ma, Q. S. Shi, X. B. Xie, and X. M. Huang (2017) A comparative analysis of antibacterial activity, dynamics, and effects of silver ions and silver nanoparticles against four bacterial strains. Int. Biodeterior. Biodegradation. 123: 304–310.

    CAS  Article  Google Scholar 

  15. 15.

    Gole, A., C. Dash, V. Ramakrishnan, S. R. Sainkar, A. B. Mandale, M. Rao, and M. Sastry (2001) Pepsin-gold colloid conjugates: preparation, characterization, and enzymatic activity. Langmuir. 17: 1674–1679.

    CAS  Article  Google Scholar 

  16. 16.

    Singh, H., J. Du, and T. H. Yi (2017) Kinneretia THG-SQI4 mediated biosynthesis of silver nanoparticles and its antimicrobial efficacy. Artif. Cells. Nanomed. Biotechnol. 45: 602–608.

    CAS  Article  Google Scholar 

  17. 17.

    Naqvi, S. Z. H., U. Kiran, M. I. Ali, A. Jamal, A. Hameed, S. Ahmed, and N. Ali (2013) Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria. Int. J. Nanomedicine. 8: 3187–3195.

    Article  Google Scholar 

  18. 18.

    Fayaz, A. M., K. Balaji, M. Girilal, R. Yadav, P. T. Kalaichelvan, and R. Venketesan (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against grampositive and gram-negative bacteria. Nanomedicine. 6: 103–109.

    CAS  Article  Google Scholar 

  19. 19.

    Jain, J., S. Arora, J. M. Rajwade, P. Omray, S. Khandelwal, and K. M. Paknikar (2009) Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol. Pharm. 6: 1388–1401.

    CAS  Article  Google Scholar 

  20. 20.

    Sathishkumar, M., K. Sneha, S. W. Won, C. W. Cho, S. Kim, and Y. S. Yun (2009) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf. B Biointerfaces. 73: 332–338.

    CAS  Article  Google Scholar 

  21. 21.

    Lee, W., K. J. Kim, and D. G. Lee (2014) A novel mechanism for the antibacterial effect of silver nanoparticles on Escherichia coli.Biometals. 27: 1191–1201.

    CAS  Article  Google Scholar 

  22. 22.

    Lok, C. N., C. M. Ho, R. Chen, Q. Y. He, W. Y. Yu, H. Sun, P. K. H. Tam, J. F. Chiu, and C. M. Che (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 5: 916–924.

    CAS  Article  Google Scholar 

  23. 23.

    Nomiya, K., S. Takahashi, R. Noguchi, S. Nemoto, T. Takayama, and M. Oda (2000) Synthesis and characterization of water-soluble silver(I) complexes with L-histidine (H2his) and (S)-(-)-2-pyrrolidone-5-carboxylic acid (H2pyrrld) showing a wide spectrum of effective antibacterial and antifungal activities. Crystal structures of chiral helical polymers [Ag(Hhis).n and ([Ag(Hpyrrld).2)n in the solid state. Inorg. Chem. 39: 3301–3311.

    CAS  Article  Google Scholar 

  24. 24.

    Hajipour, M. J., K. M. Fromm, A. A. Ashkarran, D. J. de Aberasturi, I. R. de Larramendi, T. Rojo, V. Serpooshan, W. J. Parak, and M. Mahmoudi (2012) Antibacterial properties of nanoparticles. Trends Biotechnol. 30: 499–511.

    CAS  Article  Google Scholar 

  25. 25.

    McShan, D., P. C. Ray, and H. Yu (2014) Molecular toxicity mechanism of nanosilver. J. Food Drug Anal. 22: 116–127.

    CAS  Article  Google Scholar 

  26. 26.

    Navarro, E., F. Piccapietra, B. Wagner, F. Marconi, R. Kaegi, N. Odzak, L. Sigg, and R. Behra (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii.Environ. Sci. Technol. 42: 8959–8964.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Research Program of State Key Laboratory of Food Science and Technology, Jiangnan University (NO. SKLF-ZZA-201906); Fundamental Research Funds for the Central Universities (No. JUSRP11968 and JUSRP11961).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Chang-Tian Li or Zheng-Fei Yan.

Ethics declarations

Conflict of Interest The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Ethical Statement Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, P., Wang, F., Li, C. et al. An Enhancement of Antibacterial Activity and Synergistic Effect of Biosynthesized Silver Nanoparticles by Eurotium cristatum with Various Antibiotics. Biotechnol Bioproc E 25, 450–458 (2020). https://doi.org/10.1007/s12257-019-0506-7

Download citation

Keywords

  • silver nanoparticles
  • Eurotium cristatum
  • antibacterial activity
  • DNA cleavage