Medium Compositions for the Improvement of Productivity in Syngas Fermentation with Clostridium autoethanogenum


The cost of culture media represents a considerable portion of the overall cost in syngas fermentation. Yeast extract is an expensive ingredient among the medium components required to prepare the culture medium. In this study, we evaluated the effectiveness of replacing yeast extract with relatively low-cost nutrient supplements such as corn steep liquor, malt extract, and vegetable extract in improving the feasibility of the syngas fermentation process in Clostridium autoethanogenum culture. The use of corn steep liquor, malt extract, and vegetable extract as nutrient supplements at a concentration of 0.5 g/L resulted in optical densities of 1.44, 1.37, and 1.71, and produced ethanol concentrations of 2.24, 3.37, and 3.76 g/L, respectively. The microbial growth and ethanol production in syngas fermentation with yeast extract alternatives was comparable with the results of fermentation with yeast extract (optical density of 1.48 and ethanol concentration of 2.16). Moreover, the use of malt and vegetable extracts showed considerable improvement (69% and 51%, respectively) in the specific ethanol productivity compared to yeast extract.

This is a preview of subscription content, log in to check access.


  1. 1.

    Wainaina, S., I. S. Horváth, and M. J. Taherzadeh (2018) Biochemicals from food waste and recalcitrant biomass via syngas fermentation: A review. Bioresour. Technol. 248: 113–121.

    CAS  Article  Google Scholar 

  2. 2.

    Kootstra, A. M. J., H. H. Beeftink, E. L. Scott, and J. P. M. Sanders (2009) Optimization of the dilute maleic acid pretreatment of wheat straw. Biotechnol. Biofuels. 2: 31.

    Article  Google Scholar 

  3. 3.

    Liu, K., H. K. Atiyeh, B. S. Stevenson, R. S. Tanner, M. R. Wilkins, and R. L. Huhnke (2014) Continuous syngas fermentation for the production of ethanol, n-propanol and n-butanol. Bioresour. Technol. 151: 69–77.

    CAS  Article  Google Scholar 

  4. 4.

    Wilkins, M. R. and H. K. Atiyeh (2011) Microbial production of ethanol from carbon monoxide. Curr. Opin. Biotechnol. 22: 326–330.

    CAS  Article  Google Scholar 

  5. 5.

    Arafat, H. A. and K. Jijakli (2013) Modeling and comparative assessment of municipal solid waste gasification for energy production. Waste Manag. 33: 1704–1713.

    CAS  Article  Google Scholar 

  6. 6.

    Abrini, J., H. Naveau, and E. J. Nyns (1994) Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch. Microbiol. 161: 345–351.

    CAS  Article  Google Scholar 

  7. 7.

    Chang, I. S., B. H. Kim, R. W. Lovitt, and J. S. Bang (2001) Effect of CO partial pressure on cell-recycled continuous CO fermentation by Eubacterium limosum KIST612. Process Biochem. 37: 411–421.

    CAS  Article  Google Scholar 

  8. 8.

    Henstra, A. M., J. Sipma, A. Rinzema, and A. J. M. Stams (2007) Microbiology of synthesis gas fermentation for biofuel production. Curr. Opin. Biotechnol. 18: 200–206.

    CAS  Article  Google Scholar 

  9. 9.

    Köpke, M., C. Held, S. Hujer, H. Liesegang, A. Wiezer, A. Wollherr, A. Ehrenreich, W. Liebl, G. Gottschalk, and P. Dürre (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc. Natl. Acad. Sci. USA. 107: 13087–13092.

    Article  Google Scholar 

  10. 10.

    Kundiyana, D. K., M. R. Wilkins, P. Maddipati, and R. L. Huhnke (2011) Effect of temperature, pH and buffer presence on ethanol production from synthesis gas by “Clostridium ragsdalei”. Bioresour. Technol. 102: 5794–5799.

    CAS  Article  Google Scholar 

  11. 11.

    Shen, Y., R. C. Brown, and Z. Wen (2017) Syngas fermentation by Clostridium carboxidivorans P7 in a horizontal rotating packed bed biofilm reactor with enhanced ethanol production. Appl. Energy. 187: 585–594.

    CAS  Article  Google Scholar 

  12. 12.

    Ragsdale, S. W. (2008) Enzymology of the wood-Ljungdahl pathway of acetogenesis. Ann. N Y. Acad. Sci. 1125: 129–136.

    CAS  Article  Google Scholar 

  13. 13.

    Kim, Y. K. and H. Lee (2016) Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation. Bioresour. Technol. 204: 139–144.

    CAS  Article  Google Scholar 

  14. 14.

    Sun, X., H. K. Atiyeh, A. Kumar, and H. Zhang (2018) Enhanced ethanol production by Clostridium ragsdalei from syngas by incorporating biochar in the fermentation medium. Bioresour. Technol. 247: 291–301.

    CAS  Article  Google Scholar 

  15. 15.

    Guo, Y., J. Xu, Y. Zhang, H. Xu, Z. Yuan, and D. Li (2010) Medium optimization for ethanol production with Clostridium autoethanogenum with carbon monoxide as sole carbon source. Bioresour. Technol. 101: 8784–8789.

    CAS  Article  Google Scholar 

  16. 16.

    Saxena, J. and R. S. Tanner (2011) Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei. J. Ind. Microbiol. Biotechnol. 38: 513–521.

    CAS  Article  Google Scholar 

  17. 17.

    Saxena, J. and R. S. Tanner (2012) Optimization of a corn steep medium for production of ethanol from synthesis gas fermentation by Clostridium ragsdalei. World J. Microbiol. Biotechnol. 28: 1553–1561.

    CAS  Article  Google Scholar 

  18. 18.

    Gao, J., H. K. Atiyeh, J. R. Phillips, M. R. Wilkins, and R. L. Huhnke (2013) Development of low cost medium for ethanol production from syngas by Clostridium ragsdalei. Bioresour. Technol. 147: 508–515.

    Google Scholar 

  19. 19.

    Cotter, J. L., M. S. Chinn, and A. M. Grunden (2009) Ethanol and acetate production by Clostridium ljungdahlii and Clostridium autoethanogenum using resting cells. Bioprocess. Biosyst. Eng. 32: 369–380.

    CAS  Article  Google Scholar 

  20. 20.

    Kundiyana, D. K., R. L. Huhnke, P. Maddipati, H. K. Atiyeh, and M. R. Wilkins (2010) Feasibility of incorporating cotton seed extract in Clostridium strain P11 fermentation medium during synthesis gas fermentation. Bioresour. Technol. 101: 9673–9680.

    CAS  Article  Google Scholar 

  21. 21.

    Maddipati, P., H. K. Atiyeh, D. D. Bellmer, and R. L. Huhnke (2011) Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract. Bioresour. Technol. 102: 6494–6501.

    CAS  Article  Google Scholar 

  22. 22.

    Sun, X., H. K. Atiyeh, A. Kumar, H. Zhang, and R. S. Tanner (2018) Biochar enhanced ethanol and butanol production by Clostridium carboxidivorans from syngas. Bioresour. Technol. 265: 128–138.

    CAS  Article  Google Scholar 

  23. 23.

    Abubackar, H. N., Á. Fernández-Naveira, M. C. Veiga, and C. Kennes (2016) Impact of cyclic pH shifts on carbon monoxide fermentation to ethanol by Clostridium autoethanogenum. Fuel. 178: 56–62.

    CAS  Article  Google Scholar 

  24. 24.

    Park, S., B. Ahn, and Y. K. Kim (2019) Growth enhancement of bioethanol-producing microbe Clostridium autoethanogenum by changing culture medium composition. Bioresour. Technol. Rep. 6: 237–240.

    Article  Google Scholar 

  25. 25.

    Valgepea, K., R. de Souza Pinto Lemgruber, K. Meaghan, R. W. Palfreyman, T. Abdalla, B. D. Heijstra, J. B. Behrendorff, R. Tappel, M. Köpke, S. D. Simpson, L. K. Nielsen, and E. Marcellin (2017) Maintenance of ATP homeostasis triggers metabolic shifts in gas-fermenting acetogens. Cell Syst. 4: 505–515.e5.

    CAS  Article  Google Scholar 

  26. 26.

    DuBois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith (1956) Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356.

    CAS  Article  Google Scholar 

  27. 27.

    Alibaba, Accessed August 13, 2019.

Download references


This research was supported by C1 Gas Refinery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT(NRF-2018M3D3A1A01017994) and by the Basic Science Research program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1B07043323). We would like to thank Editage ( for English language editing.

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information



Corresponding author

Correspondence to Young-Kee Kim.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thi, H.N., Park, S., Li, H. et al. Medium Compositions for the Improvement of Productivity in Syngas Fermentation with Clostridium autoethanogenum. Biotechnol Bioproc E 25, 493–501 (2020).

Download citation


  • syngas fermentation
  • bioethanol
  • medium optimization
  • yeast extract