Production of Functional Peptide with Anti-obesity Effect from Defatted Tenebrio molitor Larvae Using Proteolytic Enzyme


This study was conducted to investigate the anti-obesity effect of peptides derived from defatted mealworm (Tenebrio molitor larvae) and to determine the expression level of obesity-related membrane-associated proteins in the rat muscle. The production of functional peptide was produced by hydrolysis of mealworm protein using commercial enzymes. To evaluate anti-obesity effects through animal feeding experiments, a total of thirty-two rats were randomly divided into control diet (CD), 5% mealworm peptide supplemented control diet (CT), high-fat diet (HD), and 5% mealworm peptide supplemented high-fat diet group (HT). The weight loss of HT was confirmed by mealworm peptides feeding. The weights of fat tissues (perirenal and epididymal) of HT were significantly decreased, however, soleus muscle weight of HT was significantly increased compared to those of the HD, respectively. The expression levels of obesity-related membrane-associated proteins (FABPpm, PGC-1α, and PPAR) in HT group involved in fatty acid transport and utilization were significantly higher than that of the HD. From these results, mealworm peptide supplement showed an anti-obesity effect by stimulation of FABPpm, PGC-1α, and PPAR-δ in skeletal muscle and then showed an increase in muscle weight along with body weight loss in HT group.

This is a preview of subscription content, log in to check access.


  1. 1.

    Petrie, J., T. Guzik, and R. M. Touyz (2018) Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Can. J. Cardiol. 34: 575–584.

    Article  Google Scholar 

  2. 2.

    Kumar, M. S. (2019) Peptides and peptidomimetics as potential antiobesity agents: overview of current status. Front. Nutr. 6: 11.

    Article  Google Scholar 

  3. 3.

    Swinburn, B. A., G. Sacks, K. D. Hall, K. McPherson, D. T. Finegood, M. L. Moodie, and S. L. Gortmaker (2011) The global obesity pandemic: shaped by global drivers and local environments. Lancet. 378: 804–814.

    Article  Google Scholar 

  4. 4.

    Kang, H. K., H. H. Lee, C. H. Seo, and Y. Park (2019) Antimicrobial and immunomodulatory properties and applications of marine-derived proteins and peptides. Mar Drugs. 17: 350–375.

    CAS  Article  Google Scholar 

  5. 5.

    Kim, C. H. (2012) Research trend on the immune modulation of lactic acid bacteria and milk-derived peptide. Food Sei. Anim. Resour. Ind. 1: 37–46.

    Google Scholar 

  6. 6.

    Hoa, N. T. Q. and D. T. A. Dao (2017) Release bioactive peptides from enzymatic hydrolysated soybean by alcalase and protamex using response surface methodology. J. Sci. Technol. 55: 137–149.

    Google Scholar 

  7. 7.

    Kim, Y. M., I. H. Kim, I. W. Choi, M. K. Lee, and T. J. Nam (2015) The anti-obesity effects of a tuna peptide on 3T3-L1 adipocytes are mediated by the inhibition of the expression of lipogenic and adipogenic genes and by the activation of the Wnt/ ß-catenin signaling pathway. Int. J. Mol. Med. 36: 327–334.

    CAS  Article  Google Scholar 

  8. 8.

    Schiefenhövel, W. and P. Blum (2009) Insects: Forgotten and rediscovered as food. Entomophagy among the Eipo, highlands of West New Guinea, and in other traditional societies, pp. 163–176. In: J. MacClancy, C. J. Henry, and H. Macbeth (eds.). Consuming the Inedible. Berghaghn Books, Brooklyn, NY, USA.

    Google Scholar 

  9. 9.

    Anankware, P. J., K. O. Fening, E. Osekre, and D. Obeng-Ofori (2015) Insects as food and feed: A review. Int. J. Agric. Res. Rev. 3: 143–151.

    Google Scholar 

  10. 10.

    Bovera, F., G. Piccolo, L. Gasco, S. Marono, R. Loponte, G. Vassalotti, V. Mastellone, P. Lombardi, Y. A. Attia, and A. Nizza (2015) Yellow mealworm larvae (Tenebrio molitor, L.) as a possible alternative to soybean meal in broiler diets. Br. Poult. Sei. 56: 569–575.

    CAS  Google Scholar 

  11. 11.

    Zhao, X., J. L. Vázquez-Gutiérrez, D. P. Johansson, R. Landberg, and M. Langton (2016) Yellow mealworm protein for food purposes - extraction and functional properties. PLoS One. 11: e0147791.

    Article  Google Scholar 

  12. 12.

    Lee, M. R., J. E. Kim, J. Y. Choi, J. J. Park, H. R. Kim, B. R. Song, Y. W. Choi, K. M. Kim, H. Song, and D. Y. Hwang (2019) Anti-obesity effect in high-fat-diet-induced obese C57BL/6 mice: Study of a novel extract from mulberry (Morus alba) leaves fermented with Cordyceps militaris. Exp. Ther. Med. 17: 2185–2193.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Luiken, J. J. F. P., A. Bonen, and J. F. C. Glatz (2002) Cellular fatty acid uptake is acutely regulated by membrane-associated fatty acid-binding proteins. Prostaglandins Leukot. Essent. Fatty Acids. 67: 73–78.

    CAS  Article  Google Scholar 

  14. 14.

    Hrckova, M., M. Rusnakova, and J. Zemanovic (2002) Enzymatic hydrolysis of defatted soy flour by three different proteases and their effect on the functional properties of resulting protein hydrolysates. Czech J. Food Sci. 20: 7–14.

    CAS  Article  Google Scholar 

  15. 15.

    Ernst, O. and T. Zor (2010) Linearization of the Bradford protein assay. J. Vis. Exp. 38: el918.

    Google Scholar 

  16. 16.

    Nergui, R., S. H. Kim, W. H. Choi, S. J. Hong, and N. J. Kim (2012) Nutritional value of mealworm, Tenebrio molitor as food source. Int. J. Indust. Entomol. 25: 93–98.

    Article  Google Scholar 

  17. 17.

    Petrova, I., I. Tolstorebrov, and T. M. Eikevik (2018) Production of fish protein hydrolysates step by step: technological aspects, equipment used, major energy costs and methods of their minimizing. Int. Aquat. Res. 10: 223–241.

    Article  Google Scholar 

  18. 18.

    Csapo, J., Z. Kiss-Csapo, C. Albert, and K. Loki (2008) Hydrolysis of proteins performed at high temperatures and for short times with reduced racemization, in order to determine the enantiomers of D- and L-amino acids. Acta Univ. Sapientiae Alimentaria. 1: 31–48.

    Google Scholar 

  19. 19.

    Park, J. Y., M. N. Park, Y. Y. Choi, S. S. Yun, H. N. Chun, and Y. S. Lee (2008) Effects of whey protein hydrolysates on lipid profiles and appetite-related hormones in rats fed high fat diet. J. Korean Soc. Food Sci. Nutr. 37: 428–436.

    CAS  Article  Google Scholar 

  20. 20.

    Hong, S. M., E. C. Chung, and C. H. Kim (2015) Anti-obesity effect of fermented whey beverage using lactic acid bacteria in diet-induced obese rats. Korean J. Food sci. Anim. Resour. 35: 653–659.

    Article  Google Scholar 

  21. 21.

    Zhang, J. W., X. Tong, Z. Wan, Y. Wang, L. Q. Qin, and I. M. Y. Szeto (2016) Effect of whey protein on blood lipid profiles: a meta-analysis of randomized controlled trials. Eur. J. Clin. Nut. 70: 879–885.

    Article  Google Scholar 

  22. 22.

    Turcotte, L. P., J. R. Swenberger, M. Z. Tucker, A. J. Tee, G. Trump, J. J. F. P. Luiken, and A. Bonen (2000) Muscle palmitate uptake and binding are saturable and inhibited by antibodies to FABPPM. Mol. Cell Biochem. 210: 53–63.

    CAS  Article  Google Scholar 

  23. 23.

    Vega, R B., J. L. Horton, and D. P. Kelly (2015) Maintaining ancient organelles: mitochondrial biogenesis and maturation. Circ. Res. 116: 1820–1834.

    CAS  Article  Google Scholar 

  24. 24.

    Popov, D. V., E. A. Lysenko, I. V. Kuzmin, V. Vinogradova, and A. I. Grigoriev (2015) Regulation of PGC-1α isoform expression in skeletal muscles. Acta Naturae. 7: 48–59.

    CAS  Article  Google Scholar 

  25. 25.

    Crunkhorn, S., F. Dearie, C. Mantzoros, H. Garni, W. S. da Silva, D. Espinoza, R. Faucette, K. Barry, A. C. Bianco, and M. E. Patti (2007) Peroxisome proliferator activator receptor gamma coactivator-1 expression is reduced in obesity: potential pathogenic role of saturated fatty acids and p38 mitogen-activated protein kinase activation. J. Biol. Chem. 282: 15439–15450.

    CAS  Article  Google Scholar 

  26. 26.

    Richardson, D. K., S. Kashyap, M. Bajaj, K. Cusi, S. J. Mandarino, J. Finlayson, R A. De Fronzo, C. P. Jenkinson, and L. J. Mandarino (2005) Lipid infusion decreases the expression of nuclear encoded mitochondrial genes and increases the expression of extracellular matrix genes in human skeletal muscle. J. Biol. Chem. 280: 10290–10297.

    CAS  Article  Google Scholar 

  27. 27.

    Luiken, J. J., L. P. Turcotte, and A. Bonen (1999) Protein-mediated palmitate uptake and expression of fatty acid transport proteins in heart giant vesicles. J. Lipid Res. 40: 1007–1016.

    CAS  PubMed  Google Scholar 

  28. 28.

    Supruniuk, E., A. MikŁosz, and A. Chabowski (2017) The implication of PGC-1α on fatty acid transport across plasma and mitochondrial membranes in the insulin sensitive tissues. Front Physiol. 8: 923–936

    Article  Google Scholar 

  29. 29.

    Benton, C. R., J. G. Nickerson, J. Lally, X. X. Han, G. P. Holloway, J. F. C. Glatz, J. J. F. P. Luiken, T. E. Graham, J. J. Heikkila, and A. Bonen (2008) Modest PGC-1alpha overexpression in muscle in vivo is sufficient to increase insulin sensitivity and palmitate oxidation in subsarcolemmal, not intermyofibrillar, mitochondria. J. Biol. Chem. 283: 4228–4240.

    CAS  Article  Google Scholar 

  30. 30.

    Fan, W. and R. Evans (2015) PPARs and ERRs: molecular mediators of mitochondrial metabolism. Curr Opin. Cell Biol. 33: 49–54.

    CAS  Article  Google Scholar 

  31. 31.

    Wang, Y. X., C. L. Zhang, R. T. Yu, H. K. Cho, M. C. Nelson, C. R. Bayuga-Ocampo, J. Ham, H. Kang, and R. M. Evans (2005) Correction: Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol. 3: e61.

    Article  Google Scholar 

Download references


The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information



Corresponding author

Correspondence to Jin Woo Kim.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Gu, H., Jo, J.M. et al. Production of Functional Peptide with Anti-obesity Effect from Defatted Tenebrio molitor Larvae Using Proteolytic Enzyme. Biotechnol Bioproc E 25, 374–383 (2020).

Download citation


  • mealworm
  • protease
  • peptide
  • FABPpm
  • PGC-1α
  • PPAR
  • anti-obesity