Skip to main content
Log in

Effective and Intact Cell Detachment from a Clinically Ubiquitous Culture Flask by Combining Ultrasonic Wave Exposure and Diluted Trypsin

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Bioengineering research and applications are supported by cell culture technologies that produce a large number of homogeneous cells. However, trypsin used in the general culture procedure for cell detachment decreases cell activity and culture efficiency. Furthermore, manually conducted culture procedures, especially pipetting after trypsin treatment, can induce inhomogeneous mechanical stress in cells, which may influence cellular functions. Alternate detachment methods using specialized culture devices without trypsin and/or manual pipetting have been reported. However, conventional trypsinization is still widely used. Diluted trypsin increases culture efficiency. Therefore, we developed a cell-detaching method using diluted trypsin and ultrasonic vibration for cell detachment from ubiquitous culture vessels. To demonstrate our concept, we used a T25 flask. Vibration of the culture surface was excited by ultrasonic waves propagated from an ultrasonic transducer placed under the flask. Using the proposed method, cells were completely detached by diluted trypsin, whereas 8.6% of cells remained on the flask with manual pipetting. The viability and proliferation of cells detached by the proposed method were higher than those of cells detached by the conventional method, owing to the low concentration of trypsin. Furthermore, glucose consumption after detachment showed no abnormality, eliminating possible oncogenesis. Two membrane proteins were quantified immediately after detachment and at 24 h of culture, and there were no differences between the detachment methods. Thus, we conclude that our proposed method improves culture efficiency without any adverse effects and ensures homogeneous mechanical stress on cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kino-Oka, M., N. Ogawa, R. Umegaki, and M. Taya (2005) Bioreactor design for successive culture of anchorage-dependent cells operated in an automated manner. Tissue Eng. 11: 535–545.

    Article  CAS  PubMed  Google Scholar 

  2. Kobayashi, T., K. Kan, K. Nishida, M. Yamato, and T. Okano (2013) Corneal regeneration by transplantation of corneal epithelial cell sheets fabricated with automated cell culture system in rabbit model. Biomaterials 34: 9010–9017.

    Article  CAS  PubMed  Google Scholar 

  3. Melero-Martin, J. M., M. A. Dowling, M. Smith, and M. Al-Rubeai (2006) Optimal in-vitro expansion of chondroprogenitor cells in monolayer culture. Biotechnol. Bioeng. 93: 519–533.

    Article  CAS  PubMed  Google Scholar 

  4. Punshon, G., D. S. Vara, K. M. Sales, and A. M. Seifalian, (2011) The long-term stability in gene expression of human endothelial cells permits the production of large numbers of cells suitable for use in regenerative medicine. Biotechnol. Appl. Biochem. 58: 371–375.

    Article  CAS  PubMed  Google Scholar 

  5. Jing, D., A. Parikh, J. M. Canty, and E. S. Tzanakakis (2008) Stem cells for heart cell therapies. Tissue Eng. Part B Rev. 14: 393–406.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Freshney, R. I., A. Capes-Davis, C. Gregory, and S. Przyborski (2011) Culture of animal cells: a manual of basic technique and specialized applications. Wiley Online Library.

  7. Nakao, M., Y. Kurashina, C. Imashiro, and K. Takemura (2017) A method for collecting single cell suspensions using an ultrasonic pump. IEEE Trans. Biomed. Eng. 65: 224–231.

    Article  PubMed  Google Scholar 

  8. Umegaki, R., M. Kino-Oka, and M. Taya (2004) Assessment of cell detachment and growth potential of human keratinocyte based on observed changes in individual cell area during trypsinization. Biochem. Eng. J. 17: 49–55.

    Article  CAS  Google Scholar 

  9. Kurashina, Y., Y. Hirano, C. Imashiro, K. Totani, J. Komotori, and K. Takemura (2017) Enzyme-free cell detachment mediated by resonance vibration with temperature modulation. Biotechnol. Bioeng. 114: 2279–2288.

    Article  CAS  PubMed  Google Scholar 

  10. Kurashina, Y., K. Takemura, J. Friend, S. Miyata, and J. Komotori (2016) Efficient subculture process for adherent cells by selective collection using cultivation substrate vibration. IEEE Trans. Biomed. Eng. 64: 580–587.

    PubMed  Google Scholar 

  11. Mitomo, H., E. Asumi, S. Yasunobu, M. Yasutaka, N. Kenichi, K. Nakazawa, and K. Ijiro (2016) Fabrication of a novel cell culture system using DNA-grafted substrates and DNase. J. Biomed. Nanotechnol. 12: 286–295.

    Article  CAS  PubMed  Google Scholar 

  12. Batista, U., M. Garvas, M. Nemec, M. Schara, P. Veranič, and K. Tilen (2010) Effects of different detachment procedures on viability, nitroxide reduction kinetics and plasma membrane heterogeneity of V-79 cells. Cell Biol. Int. 34: 663–668.

    Article  CAS  PubMed  Google Scholar 

  13. Okano, T., N. Yamada, M. Okuhara, H. Sakai and Y. Sakurai (1995) Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials 16: 297–303.

    Article  CAS  PubMed  Google Scholar 

  14. Papadopoulou, E. L., M. Barberoglou, V. Zorba, A. Manousaki, A. Pagkozidis, E. Stratakis, and C. Fotakis (2009) Reversible photoinduced wettability transition of hierarchical ZnO structures. J. Phys. Chem. C 113: 2891–2895.

    Article  CAS  Google Scholar 

  15. Mittal, A., M. Pulina, S.Y. Hou, and S. Astrof (2013) Fibronectin and integrin alpha 5 play requisite roles in cardiac morphogenesis. Dev. Biol. 381: 73–82.

    Article  CAS  PubMed  Google Scholar 

  16. Lorenz, A., W. Just, M. Da, S. Cardoso, and G. Klotz (1988) Electroporation-mediated transfection of Acholeplasma laidlawii with mycoplasma virus Li and L3 DNA. J. Virol. 62: 3050–3052.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hirai, H., R. Umegaki, M. Kino-Oka, and M. Taya (2002) Characterization of cellular motions through direct observation of individual cells at early stage in anchorage-dependent culture. J Biosci. Bioeng. 94: 351–356.

    Article  CAS  PubMed  Google Scholar 

  18. Kimura, Y., H. Okuda, and S. Ogita (1997) Effects of flavonoids isolated from scutellariae radix on fibrinolytic system induced by trypsin in human umbilical vein endothelial cells. J. Nat. Prod. 60: 598–601.

    Article  CAS  PubMed  Google Scholar 

  19. Huang, H. L., H. W. Hsing, T. C. Lai, Y. W. Chen, T. R. Lee, H. T. Chan, P. C. Lyu, C. L. Wu, Y. C. Lu, S. T. Lin, C. W. Lin, C. H. Lai, H. T. Chang, H. C. Chou, and H. L. Chan (2010) Trypsin-induced proteome alteration during cell subculture in mammalian cells. J. Biomed. Sci. 17: 36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Haeger, A., K. Wolf, M. M. Zegers, and P. Friedl (2015) Collective cell migration: guidance principles and hierarchies. Trends Cell Biol. 25: 556–566.

    Article  PubMed  Google Scholar 

  21. Nakajima, K., S. Honda, Y. Nakamura, F. López-Redondo, S. Kohsaka, M. Yamato, A. Kikuchi, and T. Okano (2001) Intact microglia are cultured and non-invasively harvested without pathological activation using a novel cultured cell recovery method. Biomaterials 22: 1213–1223.

    Article  CAS  PubMed  Google Scholar 

  22. Yang, M., N. Yang, S. Bi, X. He, L. Chen, Z. Zhu, Y. Gao, and Z. Du (2013) Micropatterned designs of thermoresponsive surfaces for modulating cell behaviors. Polym. Adv. Technol. 24: 1102–1109.

    Article  CAS  Google Scholar 

  23. Kakegawa, T., N. Mochizuki, N. Sadr, H. Suzuki, and J. Fukuda (2013) Cell-Adhesive and cell-repulsive zwitterionic oligopeptides for micropatterning and rapid electrochemical detachment of cells. Tissue Eng. Part A. 19: 290–298.

    Article  CAS  PubMed  Google Scholar 

  24. Yoon, S. H. and M. R. K. Mofrad (2011) Cell adhesion and detachment on gold surfaces modified with a thiol-functionalized RGD peptide. Biomaterials 32: 7286–7296.

    Article  CAS  PubMed  Google Scholar 

  25. Imashiro, C., Y. Kurashina, T. Kuribara, M. Hirano, K. Totani, and K. Takemura, (2018) Cell patterning method on a clinically ubiquitous culture dish using acoustic pressure generated from resonance vibration of a disk-shaped ultrasonic transducer. IEEE Trans. Biomed. Eng. 111–118

  26. Vanherberghen, B., O. Manneberg, A. Christakou, T. Frisk, M. Ohlin, H. M. Hertz, B. Önfelt, and M. Wiklund (2010) Ultrasound-controlled cell aggregation in a multi-well chip. Lab. Chip. 10: 2727–2732.

    Article  CAS  PubMed  Google Scholar 

  27. Wiklund M. (2012) Acoustofluidics 12: Biocompatibility and cell viability in microfluidic acoustic resonators. Lab. Chip. 12: 2018–2028

    Article  CAS  PubMed  Google Scholar 

  28. Kino-Oka, M. and M. Taya (2009) Recent developments in processing systems for cell and tissue cultures toward therapeutic application. J. Biosci. Bioeng. 108: 267–276.

    Article  CAS  PubMed  Google Scholar 

  29. Burns, E. L., V. Suntzeff, and L. Loeb (1938) The development of sarcoma in mice injected with hormones or hormone-like substances. Am. J. Cancer 32: 534–544.

    Article  Google Scholar 

  30. Cairns, R. A., I. S. Harris, and T. W. Mak (2011) Regulation of cancer cell metabolism. Nat. Rev. Cancer 11: 85–95.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, C. Z., C. Z. Wang, G. J. Wang, M. L. Ho, Y. H. Wang, M. L. Yeh, and C. H. Chen (2010) Low-magnitude vertical vibration enhances myotube formation in C2C12 myoblasts. J. Appl. Physiol. 109: 840–848.

    Article  CAS  PubMed  Google Scholar 

  32. Hino, H., S. Hashimoto, Y. Takahashi, and H. Nakajima (2016) Effect of ultrasonic vibration on proliferation and differentiation of cells. Proceedings of The 20th World Multi-Conference on Systemics, Cybernetics and Informatics. July 5–8. Florida, USA.

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers JP16H04259, JP17H07081, and 18J12482, and a Grant-in-Aid for JSPS Fellows. This work was also supported in part by a MEXT Grant-in-Aid for the Program for Leading Graduate Schools and JST Global Science Campus Program. It is acknowledged that Chikahiro Imashiro is a research fellow of the Japan Society for the Promotion of Science. Chikahiro Imashiro, Yuta Kurashina, and Kenjiro Takemura have a patent pending based on the work presented in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenjiro Takemura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tauchi, H., Imashiro, C., Kuribara, T. et al. Effective and Intact Cell Detachment from a Clinically Ubiquitous Culture Flask by Combining Ultrasonic Wave Exposure and Diluted Trypsin. Biotechnol Bioproc E 24, 536–543 (2019). https://doi.org/10.1007/s12257-018-0491-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0491-2

Keywords

Navigation