Skip to main content
Log in

Production of 5-aminolevulinic Acid by Recombinant Streptomyces coelicolor Expressing hemA from Rhodobacter sphaeroides

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Over the past two decades, intensive efforts have been made to construct recombinant Escherichia coli or Corynebacterium glutamicum by engineering C4 or C5 pathways to improve microbial production of 5-aminolevulinic acid (ALA), which has medical application for photodynamic cancer therapy and tumor diagnosis. In this study, we explored the feasibility of enhanced production of ALA by expressing C4 pathway enzyme, ALA synthase, in Streptomyces coelicolor, and medium optimization. The hemA from Rhodobacter sphaeroides was successfully integrated into the chromosome of Streptomyces coelicolor by conjugal transformation, and recombinant Streptomyces cells expressed well the foreign hemA. Glucose promoted ALA synthesis, and yeast extract showed a strong positive effect on ALA production. Optimization of casamino acid, peptone, malt extract, glycine, and succinic acid increased the product titer. In flask cultures, cell growth and ALA production of recombinant Streptomyces were 2.3 and 3.0-fold higher, respectively, in optimal medium than those of control. The maximum ALA, 137 mg/L, was obtained at 28 h in bioreactor culture, in which 3.1-fold higher cell mass and 2.9-fold greater volumetric productivity were achieved, compared to those in flask cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wachowska, M., A. Muchiwiez, M. Firczuk, M. Gabrysiak, M. Winiarska, M. Wanezyk, K. Bojarezuk, and J. Golab (2011) Aminolevulinic acid (ALA) as a prodrug in photodynamic therapy of cancer. Molecules 16: 4140–4164.

    Article  CAS  PubMed Central  Google Scholar 

  2. Liu, S., G. Zhang, X. Li, and J. Zhang (2014) Microbial production and application of 5-aminolevulinic acid. Appl. Microbiol. Biotechnol. 98: 7349–7357.

    Article  CAS  PubMed  Google Scholar 

  3. Sasaki, K., M. Watanabe, T. Tanaka, and T. Tanaka (2002) Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl. Microbiol. Biotechnol. 58: 23–29.

    Article  CAS  PubMed  Google Scholar 

  4. Nishikawa, S., K. Watanabe, T. Tanaka, and N. Miyachi (1999) Rhodobacter sphaeroides mutants which accumulate 5-aminolevulinic acid under aerobic and dark conditions. J. Biosci. Bioeng. 87: 798–804.

    Article  CAS  PubMed  Google Scholar 

  5. Xie, L., D. Hall, M. A. Eiteman, and E. Altman (2003) Optimization of recombinant aminolevulinate synthase production in Escherichia coli using factorial design. Appl. Microbiol. Biot. 63: 267–273.

    Article  CAS  Google Scholar 

  6. Fu, W., J. Lin, and P. Cen (2007) 5-Aminolevulinate production with recombinant Escherichia coli using a rare codon optimizer host strain. Appl. Microbiol. Biot. 75: 777–782.

    Article  CAS  Google Scholar 

  7. Lee, D.-H., W.-J. Jun, K.-M. Kim, D.-H. Shin, H.-Y. Cho, and B.-S. Hong (2003) Inhibition of 5-aminolevulinic acid dehydrogenase in recombinant Escherichia coli using D-glucose. Enzyme Microb. Technol. 32: 27–34.

    Article  CAS  Google Scholar 

  8. Lin, J., W. Fu, and P. Cen (2009) Characterization of 5-aminolevulinate synthase from Agrobacterium radiobacter, screening new inhibitors for 5-aminolevulinate dehydratase from Escherichia coli and their potential use for high 5-aminolevulinate production. Biores. Technol. 100: 2293–2297.

    Article  CAS  Google Scholar 

  9. Qin, G., J. Lin, X. Liu, and P. Cen (2006) Effects of medium composition on production of 5-aminolevulinic acid by recombinant Escherichia coli. J. Biosci. Bioeng. 102: 316–322.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, J., Z. Kang, J. Chen, and G. Du (2015) Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli. Sci. Rep. 5: 8584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kang, Z., Y. Wang, P. Gu, Q. Wang, and Q. Qi (2011) Engineering Escherichia coli for 5-aminolevulinic acid from glucose. Metab. Eng. 13: 492–498.

    Article  CAS  PubMed  Google Scholar 

  12. Li, F., Y. Wang, K. Gong, Q. Wang, Q. Liang, and Q. Qi (2014) Constitutive expression of RyhB regulates the heme biosynthesis pathway and increases the 5-aminolevulinic acid accumulation in Escherichia coli. FEMS Microbiol. Lett. 350: 209–215.

    Article  CAS  PubMed  Google Scholar 

  13. Feng, L., Y. Zhang, J. Fu, Y. Mao, T. Chen, X. Zhao, and Z. Wang (2015) Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid, Biotechnol. Bioeng. 113: 1284–1293.

    Article  CAS  PubMed  Google Scholar 

  14. Yang, P., W. Liu, X. Cheng, J. Wang, Q. Wang, and Q. Qi (2016) A new strategy for production of 5-aminolevulinic acid in recombinant Corynebacterium glutamicum with high yield. Appl. Environ. Microb. 82: 2709–2717.

    Article  CAS  Google Scholar 

  15. Yu, X., H. Jin, W. Liu, Q. Wang, and Q. Qi (2015) Engineering Corynebacterium glutamicum to produce 5-aminolevulinic acid from glucose. Microb. Cell Fact. 14: 183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ramzi, A. B., J. E. Hyeon, S. W. Kim, C. Park, and S. O. Han (2015) 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway. Enzyme Microb. Technol. 81: 1–7.

    Article  CAS  PubMed  Google Scholar 

  17. Anne, J., K. Vrancken, L.V. Mellaert, J.V. Impe, and K. Bernaerts (2014) Protein secretion biotechnology in gram-positive bacteria with special emphasis on Streptomyces lividans. Biochim. Biophys. Acta 1843: 1750–1761.

    Article  CAS  PubMed  Google Scholar 

  18. Barka, E. A., P. Vatsa, L. Sanchez, N. Gaveau-Vaillant, C. Jacquard, H.-P. Klenk, C. Clement, Y. Ouhdouch, and G. P. Wezel (2015) Taxonomy, physiology, and natural products of Actinobacteria. Microbiol. Mol. Bio. Rev. 80: 1–43.

    Article  Google Scholar 

  19. Tezuka, T. and Y. Ohnishi (2014) Two glycine riboswitches activate the glycine cleavage system essential for glycine detoxification in Streptomyces griseus. J. Bacteriol. 196: 1369–1376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bentley, S. D., K. F. Chater, A.-M. Gerdeno-Tarraga, G. L. Challis, N. R. Thomson, K. D. James, D. E. Harris, M. A. Quall, H. Kieser, D. Harper, and other 33 authors (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141–147.

    Article  PubMed  Google Scholar 

  21. Amara, A., E. Takano, and R. Breitling (2018) Development and validation of an updated computational model of Streptomyces coelicolor primary and secondary metabolism. BMC Genomics 19: 519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Muhamadali, H., Y. Xu, D.I. Ellis, D.K. Trivedi, N.J.W. Rattray, K. Bernaerts, and R. Goodacre (2015) Metabolomics investigation of recombinant mTNFa production in Streptomyces lividans. Microb. Cell Fact. 14: 157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Esnault, C., T. Dulermo, A. Smirnov, A. Askora, M. David, A. Deniset-Besseau, I.-B. Holland, and M.-J. Virolle (2017) Strong antibiotic production is correlated with highly active oxidative metabolism in Streptomyces coelicolor M145. Sci. Rep. 7: 200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Robertsen, H. L., T. Weber, H. U. Kim, and S. Y. Lee (2018) Toward systems metabolic engineering of for Streptomycetes for secondary metabolites production, Biotechnol. J. 13: 1700465.

    Article  CAS  Google Scholar 

  25. Kieser, T., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich, UK.

    Google Scholar 

  26. Cheng, J., A. A. Guffanti, and T. A. Krulwich (1994) The chromosomal tetracycline resistance locus of Bacillus subtilis encodes a Na+/H+ antiporter that is physiologically important at elevated pH. J. Biol. Chem. 269: 27365–27371.

    CAS  PubMed  Google Scholar 

  27. Lu, W., N. Roongsawang, and T. Mahmud (2011) Biosynthetic studies and genetic engineering of pactamycin analogs with improved selectivity toward material parasites. Chem. Biol. 18: 425–431.

    Article  CAS  PubMed  Google Scholar 

  28. Combes, P., R. Till, S. Bee, and M. C. M. Smith (2002) The Streptomyces genome contains multiple pseudo-attB sites for the FC31-encoded site-specific recombination system. J. Bacteriol. 184: 5746–5752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yan, J., D. N. Pham, D. K. Kang, S. B. Kim, and C.-J. Kim (2016) Production of aminolevulinic acid by recombinant Escherichia coli co-expressing hemA and otsBA using crude glycerol as carbon source. Microbiol. Biotechnol. Lett. 44: 341–348.

    Article  CAS  Google Scholar 

  30. Choi, S.-S., W.-J. Chi, J. H. Lee, S.-S. Kang, B. C. Jeong, and S. K. Hong (2001) Overexpression of the sprD gene encoding Streptomyces griseus protease D stimulates actinorhodin production in Streptomyces lividans. J. Microbiol. 39: 305–313.

    CAS  Google Scholar 

  31. Willey, J. M., L. M. Sherwood, and C. J. Woolverton (2007) Prescott, Harley, and Klein’s Microbiology. 7th ed., pp. 192–245. McGraw-Hill Higher Education, NY, USA.

    Google Scholar 

  32. Romero-Rodriguez, A., D. Rocha, B. Ruiz-Villafan, S. Guzman-Trampe, N. Maldonado-Carmona, M. Vazquez-Hernandez, A. Zelarayan, R. Rodriguez-Sanoja, and S. Sanchez (2017) Carbon catabolite regulation in Streptomyces: new insights and lessons learned. World J. Microbiol. Biotechnol. 33: 162.

    Article  CAS  PubMed  Google Scholar 

  33. Ser, H.-L., J. W.-F. Law, N. Chaiyakunapruk, S. A. Jacob, U. D. Palanisamy, K.-G. Chan, B.-H. Goh, and L.-H. Lee (2016) Fermentation conditions that affect clavulanic acid production in Streptomyces clavuligerus: A systematic review. Front. Microbiol. 7: 522.

    PubMed  PubMed Central  Google Scholar 

  34. Jonsbu, E., M. Mcintyre, and J. Nielsen (2002) The influence of carbon sources and morphology on nystatin production by Streptomyces noursei. J. Biotechnol. 95: 133–144.

    Article  CAS  PubMed  Google Scholar 

  35. Liu, X. X., L. Wang, Y. J. Wang, and L. L. Cai (2010) D-glucose enhanced 5- aminolevulinic acid production in recombinant Escherichia coli culture. Appl. Biochem. Biotechnol. 160: 822–830.

    Article  CAS  PubMed  Google Scholar 

  36. Kang, Z., J. Zhang, J. Zhou, Q. Qi, G. Du, and J. Chen (2012) Recent advances in microbial production of d-aminolevulinic acid and vitamin B12. Biotechnol. Adv. 30: 1533–1542.

    Article  CAS  PubMed  Google Scholar 

  37. Fang, H., J. Kang, and D. Zhang (2017) Microbial production of vitamin B12: a review and future perspectives. Microb. Cell Fact. 16: 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Beg, Q. K., B. Bhushan, M. Kapoor, and G. S. Hoondal (2000) Effect of amino acids on production of xylanase and pectinase from Streptomyces sp. QG-11-3. World J. Microb. Biot. 16: 211–213.

    Article  CAS  Google Scholar 

  39. Wattanachaisareekul, S., A. Tachaleat, J. Punya, R. Haritakun, C. Boonlarppradab, and S. C. Cheevadhanarak (2014) Assessing medium constituents for optimal heterologous production of anhydromevalonolactone in recombinant Aspergillus oryzae. AMB Express. 4:52.

    Article  CAS  Google Scholar 

  40. Liu, S.-R., Q.-P. Wu, J.-M. Zhang, and S.-P. Mo (2015) Efficient production of e-poly-L-lysine by Streptomyces ahygroscopicus using one-stage pH control fed-batch fermentation coupled with nutrient feeding. J. Microbiol. Biotechnol. 25: 358–365.

    Article  CAS  PubMed  Google Scholar 

  41. Srivastava, A., V. Singh, S. Haque, S. Pandey, M. Mishra, A. Jawed, P. K. Shukla, P. K. Singh, C. K. M. Tripathi (2018) Response surface methodology-genetic algorithm based medium optimization, purification, and characterization of cholesterol oxidase from Streptomyces rimosus. Sci. Rep. 8: 10913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Werf, M. J. and J. G. Zeikus (1996). 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene. Appl. Environ. Microb. 62: 3560–3566.

    Google Scholar 

  43. Lee, D.-H., W.-J. Jun, J.-W. Yoon, H.-Y. Cho, and B.-S. Hong (2004) Process strategy to enhance the production of 5-aminolevulinic acid with recombinant E. coli. J. Microbiol. Biotechnol. 14: 1310–1317.

    CAS  Google Scholar 

  44. Hishinuma, F., K. Izaki, and H. Takahashi (1969) Effects of glycine and D-amino acids on growth of various microorganisms, Agr. Biol. Chem. 33: 1577–1586.

    CAS  Google Scholar 

  45. Hammes, W., K. H. Schleifer, and O. Kandler (1973) Mode of action of glycine on the biosynthesis of peptidoglycan. J. Bacteriol. 116: 1029–1053.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Warnecke, T. and R. T. Gill (2005) Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microb. Cell Fact. 4: 25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, Q., D. Wang, Y. Wu, M. Yang, W. Li, J. Xing, and Z. Su (2010) Kinetic evaluation of products inhibition to succinic acid producers Escherichia coli NZN111, AFP111, BL21, and Actinobacillus succinogenes 130ZT. J. Microbiol. 48: 290–296.

    Article  CAS  PubMed  Google Scholar 

  48. Yu, X., H. Jin, X. Cheng, Q. Wang, and Q. Qi (2016) Transcriptomic analysis for elucidating the physiological effects of 5-aminolevulinic acid accumulation on Corynebacterium glutamicum. Microbial. Res. 192: 292–299.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research foundation (NRF), funded by the Ministry of Education, Science and Technology (NRF-2012R1A1A2007214 and 2017R1D1A1B03029032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Joon Kim.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, N.T., Pham, D.N. & Kim, CJ. Production of 5-aminolevulinic Acid by Recombinant Streptomyces coelicolor Expressing hemA from Rhodobacter sphaeroides. Biotechnol Bioproc E 24, 488–499 (2019). https://doi.org/10.1007/s12257-018-0484-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0484-1

Keywords

Navigation