Anti-cariogenic Characteristics of Rubusoside

Abstract

Streptococcus mutans plays an important role in the development of dental caries in humans by synthesizing adhesive insoluble glucans from sucrose by mutansucrase activity. To explore the anti-cariogenic characteristics of rubusoside (Ru), a natural sweetener component in Rubus suavissimus S. Lee (Rosaceae), we investigated the inhibitory effect of Ru against the activity of mutansucrase and the growth of Streptococcus mutans. Ru (50 mM) showed 97% inhibitory activity against 0.1 U/mL mutansucrase of S. mutans with 500 mM sucrose. It showed competitive inhibition with a Ki value of 1.1 ± 0.2 mM and IC50 of 2.3 mM. Its inhibition activity was due to hydrophobic and hydrogen bonding interactions based on molecular docking analysis. Ru inhibited the growth of S. mutans as a bacteriostatic agent, with MIC and MBC values of 6 mM and 8 mM, respectively. In addition, Ru showed synergistic anti-bacterial activity when it was combined with curcumin. Therefore, Ru is a natural anti-cariogenic agent with anti-mutansucrase activity and antimicrobial activity against S. mutans.

References

  1. 1.

    van Houte, J. (1994) Role of micro-organisms in caries etiology. J. Dent. Res. 73: 672–681.2.

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Schilling, K. M. and W. H. Bowen (1992) Glucans synthesized in situ in experimental salivary pellicle function as specific binding sites for Streptococcus mutans. Infect. Immun. 60: 284–295.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Lee, D., Y. Seo, M. S. Khan, J. Hwang, Y. Jo, J. Son, K. Lee, C. Park, S. Chavan, A. A. Gilad, and J. Choi (2018) Use of nanoscale materials for effective prevention and extermination of bacterial biofilms. Biotechnol. Boproc. Eng. 23: 1–10.

    Article  CAS  Google Scholar 

  4. 4.

    Monchois, V., R. M. Willemot, and P. Monsan (1999) Glucansucrases: mechanism of action and structure-function relationships. FEMS Microbiol. Rev. 23: 131–151.

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Tamesada, M., S. Kawabata, T. Fujiwara, and S. Hamada (2004) Synergistic effects of streptococcal glucosyltransferases on adhesive biofilm formation. J. Dent. Res. 83: 874–879.

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Ito, K., S. Ito, T. Shimamura, S. Weyand, Y. Kawarasaki, T. Misaka, K. Abe, T. Kobayashi, A. D. Cameron, and S. Iwata (2011) Crystal structure of glucansucrase from the dental caries pathogen Streptococcus mutans. J. Mol. Biol. 408: 177–186.

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Xu, X., X. D. Zhou, and C. D. Wu (2011) The tea catechin epigallocatechin gallate suppresses cariogenic virulence factors of Streptococcus mutans. Antimicrob. Agents Chemother. 55: 1229–1236.

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Zhang, M., T. Dai, and N. Feng (2017) A novel solubility-enhanced rubusoside-based micelles for increased cancer therapy. Nanoscale Res. Lett. 12: 274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Nguyen, T. T. H., S. J. Jung, H. K. Kang, Y. M. Kim, Y. H. Moon, M. Kim, and D. Kim (2014) Production of rubusoside from stevioside by using a thermostable lactase from Thermus thermophilus and solubility enhancement of liquiritin and teniposide. Enzyme Microb. Tech. 64–65: 38–43.

    Article  CAS  Google Scholar 

  10. 10.

    Chu, J., T. Zhang, and K. He (2016) Cariogenicity features of Streptococcus mutans in presence of rubusoside. BMC Oral Health. 16: 54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Lim, H. J., T. T. H. Nguyen, N. M. Kim, J. S. Park, T. S. Jang, and D. Kim (2017) Inhibitory effect of flavonoids against NS2B-NS3 protease of ZIKA virus and their structure activity relationship. Biotechnol. Lett. 39: 415–421.

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Yu, S. H., S. H. Kwak, T. T. H. Nguyen, Y. S. Seo, C. Song, I. K. Mok, and D. Kim (2018) Decrease of insoluble glucan formation in Streptococcus mutans by co-cultivation with Enterococcus faecium T7 and glucanase addition. Biotechnol. Lett. 40: 375–381.

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Kim, D. H., J. C. Park, G. E. Jeon, C. S. Kim, and J. H. Seo (2017) Effect of the size and shape of silver nanoparticles on bacterial growth and metabolism by monitoring optical density and fluorescence intensity. Biotechnol. Bioproc. Eng. 22: 210–217.

    Article  CAS  Google Scholar 

  14. 14.

    Hong, S. J., J. H. Lee, E. J. Kim, H. J. Yang, Y. K. Chang, J. S. Park, and S. K. Hong (2017) In vitro and in vivo investigation for biological activities of neoagarooligosaccharides prepared by hydrolyzing agar with beta-agarase. Biotechnol. Bioproc. Eng. 22: 489–496.

    Article  CAS  Google Scholar 

  15. 15.

    Nguyen, T. T. H., N. Kim, S. C. Yeom, S. Han, S. H. Kwak, S. B. Kim, J. S. Park, I. K. Mok, and D. Kim (2017) Biological characterization of epigallocatechin gallate complex with different steviol glucosides. Biotechnol. Bioproc. Eng. 22: 512–517.

    Article  CAS  Google Scholar 

  16. 16.

    Nguyen, T. T., H. J. Woo, H. K. Kang, V. D. Nguyen, Y. M. Kim, D. W. Kim, S. A. Ahn, Y. Xia, and D. Kim (2012) Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol. Lett. 34: 831–838.

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Song, J., B. Choi, E. J. Jin, Y. Yoon, and K. H. Choi (2012) Curcumin suppresses Streptococcus mutans adherence to human tooth surfaces and extracellular matrix proteins. Eur. J. Clin. Microbiol. 31: 1347–1352.

    Article  CAS  Google Scholar 

  18. 18.

    Mukasa, H., H. Tsumori, and A. Shimamura (1985) Isolation and characterization of an extracellular glucosyltransferase synthesizing insoluble glucan from Streptococcus mutans serotype c. Infect. Immun. 49: 790–796.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Shimamura, A., H. Tsumori, and H. Mukasa (1982) Purification and properties of Streptococcus mutans extracellular glucosyltransferase. Biochim. Biophys. Acta. 702: 72–80.

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Pankey, G. A., and L. D. Sabath (2004) Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin. Infect. Dis. 38: 864–870.

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Zhang, F., G. Y. Koh, D. P. Jeansonne, J. Hollingsworth, P. S. Russo, G Vicente, R. W. Stout, and Z. J. Liu (2011) A novel solubility-enhanced curcumin formulation showing stability and maintenance of anticancer activity. J. Pharm. Sci. 100: 2778–2789.

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Hu, P., P. Huang, and M. W. Chen (2013) Curcumin reduces Streptococcus mutans biofilm formation by inhibiting sortase A activity. Arch. Oral Biol. 58: 1343–1348.

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Song, J., B. Choi, E. J. Jin, Y. Yoon, and K. H. Choi (2012) Curcumin suppresses Streptococcus mutans adherence to human tooth surfaces and extracellular matrix proteins. Eur. J. Clin. Microbiol. Infect. Dis. 31: 1347–1352.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the OTTOGI Corporation through the Research and Publication Project, by the Korean Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries (IPET) through the Agriculture, Food and Rural Affairs Research Center Support Program, funded by the Ministry of Agriculture, Food, and Rural Affairs (MAFRA) (D. Kim, 710012-03-1-HD220), and by the Korean Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries (IPET) through the High Value-added Food Technology Development Program (116013032HD020) funded by the Ministry of Agriculture, Food, and Rural Affairs, Republic of Korea. The present study has been also conducted under Indo-Korea joint research program of Department of Science and Technology, Government of India (Sanction order # INT/Korea/P-37, June 15, 2017) and under the framework of International Cooperation Program managed (2016K1A3A1A19945059), and by the Basic Science Research Program (2018R1D1A1B07049569, T.T.H. Nguyen, 2018R1C1B6006348, I. Mok, 2018R1D1A1A09083366, D. Kim) managed by the NRF, Republic of Korea.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Doman Kim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material (ESM)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Nguyen, T.T.H., Jin, J. et al. Anti-cariogenic Characteristics of Rubusoside. Biotechnol Bioproc E 24, 282–287 (2019). https://doi.org/10.1007/s12257-018-0408-0

Download citation

Keywords

  • Anti-cariogenicity
  • mutansucrase
  • natural sweetener
  • rubusoside
  • Streptococcus mutans