Skip to main content
Log in

Esterification of Secondary Alcohols and Multi-hydroxyl Compounds by Candida antarctica Lipase B and Subtilisin

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Enzyme-catalyzed esterification of secondary alcohols and multi-hydroxyl compounds is one of the most valuable reactions in organic synthesis. However, it is often difficult to achieve high reaction rates and high regio-selectivities with commonly used enzymes such as lipases and proteases. One of the reasons may include bulky substituents of the secondary alcohols and multi-hydroxyl compounds (e.g., carbohydrates and flavonoids). The stereospecificity pocket of lipases, which is considered as a pocket for the binding of medium substituent, might not accept a large substituent due to steric hindrance. Thereby, this review has focused on the discussion about literature survey and structural feature of the most commonly used lipase (i.e., Candida antarctica lipase B (CAL-B)) and serine-protease (i.e., subtilisin) for acylation of secondary alcohols and complex molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonopoulou, I., S. Varriale, E. Topakas, U. Rova, P. Christakopoulos, and V. Faraco (2016) Enzymatic synthesis of bioactive compounds with high potential for cosmeceutical application. Appl. Microbiol. Biotechnol. 100: 6519–6543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. de Araújo, M. E. M., Y. E. Franco, M. C. Messias, G. B. Longato, J. A. Pamphile, and P. d. O. Carvalho (2017) Biocatalytic synthesis of flavonoid esters by lipases and their biological benefits. Planta Med. 83: 7–22.

    PubMed  Google Scholar 

  3. Gullón, B., T. A. Lú-Chau, M. T. Moreira, J. M. Lema, and G. Eibes (2017) Rutin: a review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci Technol. 67: 220–235.

    Article  Google Scholar 

  4. Scalbert, A., C. Manach, C. Morand, C. Rémésy, and L. Jiménez (2005) Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 45: 287–306.

    Article  CAS  PubMed  Google Scholar 

  5. Bezbradica, D., M. Crovic, S. J Tanaskovic, N. Lukovic, M. Carevic, A. Milivojevic, and Z. Knezevic-Jugovic (2017) Enzymatic syntheses of esters-green chemistry for valuable food, fuel and fine chemicals. Curr. Org. Chem. 21: 104–138.

    Article  CAS  Google Scholar 

  6. Cha, H.-J., E.-J. Seo, J.-W. Song, H.-J. Jo, A. R. Kumar, and J.-B. Park (2018) Simultaneous enzyme/whole-cell biotransformation of C18 ricinoleic acid into (R)-3-hydroxynonanoic acid, 9-hydroxynonanoic acid, and 1, 9-nonanedioic acid. Adv. Synth. Catal. 360: 696–703.

    Article  CAS  Google Scholar 

  7. Jeon, E.-Y., J.-H. Seo, W.-R. Kang, M.-J. Kim, J.-H. Lee, D.-K. Oh, and J.-B. Park (2016) Simultaneous enzyme/wholecell biotransformation of plant oils into C9 carboxylic acids. ACS Catal. 6: 7547–7553.

    Article  CAS  Google Scholar 

  8. Seo, E.-J., Y. J. Yeon, J.-H. Seo, J.-H. Lee, J. P. Boñgol, Y. Oh, J. M. Park, S.-M. Lim, C.-G. Lee, and J.-B. Park (2018) Enzyme/whole-cell biotransformation of plant oils, yeast derived oils, and microalgae fatty acid methyl esters into n-nonanoic acid, 9-hydroxynonanoic acid, and 1, 9-nonanedioic acid. Bioresour. Technol. 251: 288–294.

    Article  CAS  PubMed  Google Scholar 

  9. Seo, J.-H., S.-W. Baek, J. Lee, and J.-B. Park (2017) Engineering Escherichia coli BL21 genome to improve the heptanoic acid tolerance by using CRISPR-Cas9 system. Biotechnol. Bioprocess Eng. 22: 231–238.

    Article  CAS  Google Scholar 

  10. Yeon, Y. J. and J.-B. Park (2018) Regiospecific conversion of lipids and fatty acids through enzymatic cascade reactions. pp. 139–155. Lipid Modification by Enzymes and Engineered Microbes. Elsevier.

    Google Scholar 

  11. Bornscheuer, U. T. and R. J. Kazlauskas (2006) Hydrolases in organic synthesis: regio-and stereoselective biotransformations. John Wiley & Sons.

    Google Scholar 

  12. Carvalho, A. C. L. d. M., T. d. S. Fonseca, M. C. d. Mattos, M. d. C. F. d. Oliveira, T. L. G. d. Lemos, F. Molinari, D. Romano, and I. Serra (2015) Recent advances in lipase-mediated preparation of pharmaceuticals and their intermediates. Int. J. Mol. Sci. 16: 29682–29716.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kim, J. (2017) Surface display of lipolytic enzyme, Lipase A and Lipase B of Bacillus subtilis on the Bacillus subtilis spore. Biotechnol. Bioprocess Eng. 22: 462–468.

    Article  CAS  Google Scholar 

  14. Kirdi, R., N. B. Akacha, Y. Messaoudi, and M. Gargouri (2017) Enhanced synthesis of isoamyl acetate using liquid-gas biphasic system by the transesterification reaction of isoamyl alcohol obtained from fusel oil. Biotechnol. Bioprocess Eng. 22: 413–422.

    Article  CAS  Google Scholar 

  15. Kourist, R., H. Brundiek, and U. T. Bornscheuer (2010) Protein engineering and discovery of lipases. Eur. J. Lipid. Sci. Technol. 112: 64–74.

    Article  CAS  Google Scholar 

  16. Lee, H.-J., M. Haq, P. S. Saravana, Y.-N. Cho, and B.-S. Chun (2017) Omega-3 fatty acids concentrate production by enzymecatalyzed ethanolysis of supercritical CO2 extracted oyster oil. Biotechnol. Bioprocess Eng. 22: 518–528.

    Article  CAS  Google Scholar 

  17. Schreck, S. D. and A. M. Grunden (2014) Biotechnological applications of halophilic lipases and thioesterases. Appl. Microbiol. Biotechnol. 98: 1011–1021.

    Article  CAS  PubMed  Google Scholar 

  18. Sheldon, R. A. and P. C. Pereira (2017) Biocatalysis engineering: the big picture. Chem. Soc. Rev. 46: 2678–2691.

    Article  CAS  PubMed  Google Scholar 

  19. Chen, H., X. Meng, X. Xu, W. Liu, and S. Li (2018) The molecular basis for lipase stereoselectivity. Appl. Microbiol. Biotechnol. 102: 3487–3495.

    Article  CAS  PubMed  Google Scholar 

  20. Kazlauskas, R. J. and A. N. Weissfloch (1997) A structure-based rationalization of the enantiopreference of subtilisin toward secondary alcohols and isosteric primary amines. J. Mol. Catal. B Enzym. 3: 65–72.

    Article  CAS  Google Scholar 

  21. Schmid, R. D. and R. Verger (1998) Lipases: interfacial enzymes with attractive applications. Angew. Chem. Int. Ed. Engl. 37: 1608–1633.

    Article  PubMed  Google Scholar 

  22. Kazlauskas, R. J., A. N. Weissfloch, A. T. Rappaport, and L. A. Cuccia (1991) A rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase from Pseudomonas cepacia, and lipase from Candida rugosa. J. Org. Chem. 56: 2656–2665.

    Article  CAS  Google Scholar 

  23. Orrenius, C., N. Öhrner, D. Rotticci, A. Mattson, K. Hult, and T. Norin (1995) Candida antarctica lipase B catalysed kinetic resolutions: Substrate structure requirements for the preparation of enantiomerically enriched secondary alcanols. Tetrahedron Asymmetry 6: 1217–1220.

    Article  CAS  Google Scholar 

  24. Rotticci, D., F. Hæffner, C. Orrenius, T. Norin, and K. Hult (1998) Molecular recognition of sec-alcohol enantiomers by Candida antarctica lipase B. J. Mol. Catal. B Enzym. 5: 267–272.

    Article  CAS  Google Scholar 

  25. Park, A., S. Kim, J. Park, S. Joe, B. Min, J. Oh, J. Song, S. Park, S. Park, and H. Lee (2016) Structural and experimental evidence for the enantiomeric recognition toward a bulky sec-alcohol by Candida antarctica lipase B. ACS Catal. 6: 7458–7465.

    Article  CAS  Google Scholar 

  26. Woudenberg-van Oosterom, M., F. van Rantwijk, and R. A. Sheldon (1996) Regioselective acylation of disaccharides in tertbutyl alcohol catalyzed by Candida antarctica lipase. Biotechnol. Bioeng. 49: 328–333.

    Article  Google Scholar 

  27. Rich, J. O., B. A. Bedell, and J. S. Dordick (1995) Controlling enzyme-catalyzed regioselectivity in sugar ester synthesis. Biotechnol. Bioeng. 45: 426–434.

    Article  CAS  PubMed  Google Scholar 

  28. Fersht, A. R., J.-P. Shi, J. Knill-Jones, D. M. Lowe, A. J. Wilkinson, D. M. Blow, P. Brick, P. Carter, M. M. Waye, and G. Winter (1985) Hydrogen bonding and biological specificity analysed by protein engineering. Nature 314: 235.

    Article  CAS  PubMed  Google Scholar 

  29. Magnusson, A. O., J. C. Rotticci-Mulder, A. Santagostino, and K. Hult (2005) Creating space for large secondary alcohols by rational redesign of Candida antarctica lipase B. ChemBioChem. 6: 1051–1056.

    Article  CAS  PubMed  Google Scholar 

  30. Magnusson, A. O., M. Takwa, A. Hamberg, and K. Hult (2005) An S-selective lipase was created by rational redesign and the enantioselectivity increased with temperature. Angew. Chem. Int. Ed. Engl. 44: 4582–4585.

    Article  CAS  PubMed  Google Scholar 

  31. Jeon, E.-Y., A.-H. Baek, U. T. Bornscheuer, and J.-B. Park (2015) Enzyme fusion for whole-cell biotransformation of long-chain sec-alcohols into esters. Appl. Microbiol. Biotechnol. 99: 6267–6275.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Byung Park or Seongsoon Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cha, HJ., Park, JB. & Park, S. Esterification of Secondary Alcohols and Multi-hydroxyl Compounds by Candida antarctica Lipase B and Subtilisin. Biotechnol Bioproc E 24, 41–47 (2019). https://doi.org/10.1007/s12257-018-0379-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0379-1

Keywords

Navigation