Skip to main content
Log in

Isotherm, Kinetic, and Thermodynamic Characteristics for Adsorption of 2,5-Xylenol onto Activated Carbon

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The adsorption of the major tar compound, 2,5-xylenol, derived from the plant cell cultures of Taxus chinensis, onto activated carbon was examined at different initial 2,5-xylenol concentrations, durations, and temperatures. From the analysis of adsorption isotherms, the Langmuir isotherm model showed good fit to the equilibrium adsorption data. It was found that adsorption capacity decreased with increasing temperature, and the adsorption of 2,5-xylenol onto activated carbon was favorable. The obtained kinetic data for 2,5-xylenol adsorption with activated carbon agreed well with the pseudo-second-order kinetic model. By using intraparticle diffusion model, intraparticle diffusion and boundary layer diffusion did not play a dominant role in 2,5-xylenol adsorption. Thermodynamic parameters were calculated, which indicated that the adsorption was non-spontaneous, irreversible and exothermic nature. The isosteric heat of adsorption decreased with increase in surface loading, indicating a heterogeneous surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rowinsky, E. K., L. A. Cazenave, and R. C. Donehower (1990) Taxol: a novel investigational antimicrotubule agent. J. Natl. Cancer Inst. 82: 1247–1259.

    Article  CAS  PubMed  Google Scholar 

  2. Schiff, P. B., J. Fant, and S. B. Horwitz (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277: 655–667.

    Article  Google Scholar 

  3. Kim, G. J. and J. H. Kim (2015) A simultaneous microwaveassisted extraction and adsorbent treatment process under acidic conditions for recovery and separation of paclitaxel from plant cell. Korean J. Chem. Eng. 32: 1023–1028.

    Article  CAS  Google Scholar 

  4. Kim, J. H. (2006) Paclitaxel: recovery and purification in commercialization step. Korean J. Biotechnol. Bioeng. 21: 1–10.

    Google Scholar 

  5. Hsiao, J. R., S. F. Leu, and B. M. Huang (2009) Apoptotic mechanism of paclitaxel-induced cell death in human head and neck tumor cell lines. J. Oral Pathol. Med. 38: 188–197.

    Article  CAS  PubMed  Google Scholar 

  6. Rao, K. V., B. Hanuman, C. Alvarez, M. Stoy, J. Juchum, R. M. Davies, and R. Baxley (1995) A new large-scale process for taxol and related taxanes from Taxus brevifolia. Pharm. Res. 12: 1003–1010.

    Article  CAS  PubMed  Google Scholar 

  7. Baloglu, E. and D. G. I. Kingston (1999) A new semisynthesis of paclitaxel from baccatin III. J. Nat. Prod. 62: 1068–1071.

    Article  CAS  PubMed  Google Scholar 

  8. Choi, H. K., T. L. Adams, R. W. Stahlhut, S. I. Kim, J. H. Yun, B. K. Song, J. H. Kim, S. S. Hong, and H. S. Lee (1999) Method for mass production of taxol by semi-continuous culture with Taxus chinensis cell culture. US Patent 5,871,979.

    Google Scholar 

  9. Georgiev, M. I., J. Weber, and A. Maciuk (2009) Bioprocessing of plant cell cultures for mass production of targeted compounds. Appl. Microbiol. Biotechnol. 83: 809–823.

    Article  CAS  PubMed  Google Scholar 

  10. Kim, J. H., H. K. Choi, S. S. Hong, and H. S. Lee (2001) Development of high performance chromatography for paclitaxel purification from plant cell cultures. J. Microbiol. Biotechnol. 11: 204–210.

    CAS  Google Scholar 

  11. Lee, J. Y. and J. H. Kim (2011) Development and optimization of a novel simultaneous microwave-assisted extraction and adsorbent treatment process for separation and recovery of paclitaxel from plant cell cultures. Sep. Purif. Technol. 80: 240–245.

    Article  CAS  Google Scholar 

  12. Oh, H. J., H. R. Jang, K. Y. Jung, and J. H. Kim (2012) Evaluation of adsorbents for separation and purification of paclitaxel from plant cell cultures. Process Biochem. 47: 331–334.

    Article  CAS  Google Scholar 

  13. Kim, G. J., G. Y. Park, and J. H. Kim (2013) Identification and quantification of tar compounds in plant cell cultures of Taxus chinensis. Korean J. Microbiol. Biotechnol. 41: 272–277.

    Article  CAS  Google Scholar 

  14. Park, G. Y., G. J. Kim, and J. H. Kim (2015) Effect of tar compounds on the purification efficiency of paclitaxel from Taxus chinensis. J. Ind. Eng. Chem. 21: 151–154.

    Article  CAS  Google Scholar 

  15. Pyo, S. H., H. B. Park, B. K. Song, B. H. Han, and J. H. Kim (2004) A large-scale purification of paclitaxel from cell cultures of Taxus chinensis. Process Biochem. 39: 1985–1991.

    Article  CAS  Google Scholar 

  16. Pyo, S. H., B. K. Song, C. H. Ju, B. H. Han, and H. J. Choi (2005) Effects of absorbent treatment on the purification of paclitaxel from cell cultures of Taxus chinensis and yew tree. Process Biochem. 40: 1113–1117.

    Article  CAS  Google Scholar 

  17. Han, M. G., K. Y. Jeon, S. Mun, and J. H. Kim (2010) Development of a micelle-fractional precipitation hybrid process for the pre-purification of paclitaxel from plant cell cultures. Process Biochem. 45: 1368–1374.

    Article  CAS  Google Scholar 

  18. Liu, Q. -S., T. Zheng, P. Wang, J.-P. Jiang, and N. Li (2010) Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chem. Eng. J. 157: 348–356.

    Article  CAS  Google Scholar 

  19. Kang, K. C., S. H. Kwon, S. S. Kim, J. W. Choi, and K. S. Chun (2006) Adsorption of heavy metal ions onto a surface treated with granular activated carbon and activated carbon fibers. J. Anal. Sci. Technol. 19: 285–289.

    Google Scholar 

  20. Lee, D. C. and J. J. Lee (2016) Equilibrium, kinetic and thermodynamic parameter studies on adsorption of acid black 1 using coconut shell-based granular activated carbon. Korean Chem. Eng. Res. 27: 590–598.

    Google Scholar 

  21. Kam, S. K., S. S. Hyun, and M. G. Lee (2011) Removal of divalent heavy metal ions by Na-P1 synthesized from jeju scoria. J. Environ. Sci. Int. 20: 1337–1345.

    Article  Google Scholar 

  22. Dabrowski, A. (2001) Adsorption-from theory to practice. Adv. Colloid Interface Sci. 93: 135–224.

    Article  CAS  PubMed  Google Scholar 

  23. Weber, T. W. and R. K. Chakravorti (1974) Pore and solid diffusion models for fixed-bed adsorbers. AIChE J. 20: 228–238.

    Article  CAS  Google Scholar 

  24. Haghseresht, F. and G. Lu (1998) Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents. Energ. Fuel. 12: 1100–1107.

    Article  CAS  Google Scholar 

  25. Hosseini, M., S. F. L. Mertens, M. Ghorbani, and M. R. Arshadi (2003) Asymmetrical schiff bases as inhibitors of mild steel corrosion in sulphuric acid media. Mater. Chem. Phys. 78: 800–808.

    Article  CAS  Google Scholar 

  26. Gunay, A., E. Arslankaya, and I. Tosun (2007) Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics. J. Hazard. Mater. 146: 362–371.

    Article  CAS  PubMed  Google Scholar 

  27. Bucic-Kojic, A., M. Planinic, S. Tomas, M. Bilic, and D. Velic (2007) Study of solid-liquid extraction kinetics of total polyphenols from grape seeds. J. Food Eng. 81: 236–242.

    Article  CAS  Google Scholar 

  28. Pérez Marín, A. B., M. I. Aguilar, V. F. Meseguer, J. F. Ortuño, J. Sáez, and M. Lloréns (2009) Biosorption of chromium (III) by orange (Citrus cinensis) waste: batch and continuous studies. Chem. Eng. J. 155: 199–206.

    Article  CAS  Google Scholar 

  29. Langergren, S. (1898) Zur theorie der sogenannten adsorption gelöster stoffe. Veter. Hand. 24: 1–39.

    Google Scholar 

  30. Lee, J. J. (2014) Study on equilibrium, kinetic and thermodynamic for adsorption of coomassi brilliant blue G using activated carbon. Clean Technol. 20: 290–297.

    Article  Google Scholar 

  31. Weber, W.J. and J. C. Morris (1963) Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 89: 31–59.

    Google Scholar 

  32. Wu, F. C., R. L. Tseng, and R. S. Juang (2005) Comparisons of porous and adsorption properties of carbons activated by steam and KOH. J. Colloid Interface Sci. 283: 49–56.

    Article  CAS  PubMed  Google Scholar 

  33. Saha, P. and S. Chowdhury (2011) Insight into adsorption thermodynamics. Thermodynamics, Prof. Mizutani Tadashi (Ed.), ISBN: 978-953-307-544-0, InTech, Available from: http://www.intechopen.com/books/thermodynamics/insight-intoadsorptionthermodynamics.

    Google Scholar 

  34. Shin, H. S. and J. H. Kim (2016) Isotherm, kinetic and thermodynamic characteristics of adsorption of paclitaxel onto daion HP-20. Process Biochem. 51: 917–924.

    Article  CAS  Google Scholar 

  35. Lim, Y. S. and J. H. Kim (2017) Isotherm, kinetic and thermodynamic studies on the adsorption of 13-dehydroxybaccatin III from Taxus chinensis onto Sylopute. J. Chem. Thermodynamics 115: 261–268.

    Article  CAS  Google Scholar 

  36. Bang, S. Y. and J. H. Kim (2017) Isotherm, kinetic, and thermodynamic studies on the adsorption behavior of 10-deacetylpaclitaxel onto Sylopute. Biotechnol. Bioproc. Eng. 22: 620–630.

    Article  CAS  Google Scholar 

  37. Sivakumar, P. and P. N. Palanisamy (2009) Adsorption studies of basic red 29 by a non-conventional activated carbon prepared from Euphorbia antiquorum L. Int. J. Chem. Tech. Res. 1: 502–510.

    CAS  Google Scholar 

  38. Dogan, M., M. Alkan, Ö. Demirbas, Y. Özdemir, and C. Özmetin (2006) Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions. Chem. Eng. J. 124: 89–101.

    Article  CAS  Google Scholar 

  39. Cheung, W. H., Y. S. Szeto, and G. McKay (2007) Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresour. Technol. 98: 2897–2904.

    Article  CAS  PubMed  Google Scholar 

  40. Tan, I. A. W., A. L. Ahmad, and B. H. Hameed (2008) Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater. 154: 337–346.

    Article  CAS  PubMed  Google Scholar 

  41. Na, C. K. and H. J. Park (2011) Applicability of theoretical adsorption models for studies on adsorption properties of adsorbents (II). J. Korean Soc. Environ. Eng. 33: 804–811.

    Article  Google Scholar 

  42. Kweon, S. H., W. S. Kang, I. S. Kim, P. W. Park, Y. S. Yoon, and Y. O. Jeong (1998) Removal of phenols by granular activated carbon in aqueous solution. J. Environ. Sci. Int. 7: 541–548.

    Google Scholar 

  43. Hamdi Karaoglu, M., S. Zor, and M. Ugurlu (2010) Biosorption of Cr (III) from solutions using vineyard pruning waste. Chem. Eng. J. 159: 98–106.

    Article  CAS  Google Scholar 

  44. Boparai, H.K., M. Joseph, and D. M. O’Carroll (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater. 186: 458–465.

    Article  CAS  PubMed  Google Scholar 

  45. Zulfikar, M.A. (2013) Effect of temperature on adsorption of humic acid from peat water onto pyrophyllite. Int. J. Chem. Environ. Biol. Sci. 1: 2320–4087.

    Google Scholar 

  46. Dogan, M., H. Abak, and M. Alkan (2009) Adsorption of methylene blue onto hazelnut shell: kinetics, mechanism and activation parameters. J. Hazard. Mater. 164: 172–181.

    Article  CAS  PubMed  Google Scholar 

  47. Chowdhury, S., R. Mishra, P. Saha, and P. Kushwaha (2011) Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination 265: 159–168.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Hyun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, SH., Kim, JH. Isotherm, Kinetic, and Thermodynamic Characteristics for Adsorption of 2,5-Xylenol onto Activated Carbon. Biotechnol Bioproc E 23, 541–549 (2018). https://doi.org/10.1007/s12257-018-0259-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0259-8

Keywords

Navigation