Skip to main content
Log in

Enhanced Incorporation of Gaseous CO2 to Succinate by a Recombinant Escherichia coli W3110

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Carbon dioxide (CO2) emissions are related to global warming. However, CO2 can be used as an abundant and cheap carbon source for production of valuable chemicals using carbon capture and storage technology. Here, the genes related to carbon flux toward pyruvate biosynthesis in E. coli were deleted to enhance the incorporation of CO2 for succinate production. The codonoptimized carbonic anhydrase gene (SP(-)HCCA) derived from Hahella chejuensis KCTC 2396 and the phosphoenolpyruvate carboxylase gene (ppc) of E. coli W3110 were co-overexpressed to enhance carbon flux toward oxaloacetate synthesis in E. coli. Finally, we constructed SGJS134, which shows the highest production of succinate derived from CO2 compared with other strains. SGJS134 produced approximately 6.5 mM succinate from CO2 and yielded approximately 13.0 mM succinate per dry cell weight. These results may be useful for enhancing the incorporation of CO2 for succinate production in E. coli. Additionally, the metabolic engineering method used in this study will propose the potential of E. coli to convert CO2 to valuable chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stocker, T. F. and A. Schmittner. (1997) Influence of CO2 emission rates on the stability of the thermohaline circulation. Nature 388: 862–865.

    Article  CAS  Google Scholar 

  2. Katharine, L. R. and C. Ken. (2014) Maximum warming occurs about one decade after a carbon dioxide emission. Environ. Res. Lett. 9: 124002.

    Article  Google Scholar 

  3. Lee, S. W., S. B. Park, S. K. Jeong, K. S. Lim, S. H. Lee, and M. C. Trachtenberg (2010) On carbon dioxide storage based on biomineralization strategies. Micron 41: 273–282.

    Article  CAS  PubMed  Google Scholar 

  4. Figueroa, J. D., T. Fout, S. Plasynski, H. McIlvried, and R. D. Srivastava (2008) Advances in CO2 capture technology—the US Department of Energy’s Carbon Sequestration Program. International Journal of Greenhouse Gas Control 2: 9–20.

    Article  CAS  Google Scholar 

  5. Farahiyah, A. R., A. A. Maniruzzaman, R. Saidur, W. A. W. A. Bakar, M. R. Hainin, P. Ramadhansyah, and A. H. Norhidayah (2017) Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for as sustainable future. Renewable and Sustainable Energy Reviews 71: 112–126.

    Article  Google Scholar 

  6. Markewitz, P., W. Kuckshinrichs, W. Leitner, J. Linssen, P. Zapp, R. Bongartz, A. Schreiber, and T. E. Müller (2012) Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy & Environmental Science 5: 7281–7305.

    Article  CAS  Google Scholar 

  7. Manish, K., S. Smita, G. Edgard, L. Christian, and S. K. Indu (2018) Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria: A review. Bioresour. Technol. 247: 1059–1068.

    Article  Google Scholar 

  8. McKinlay, J. B., C. Vieille, and J. G. Zeikus (2007) Prospects for a bio-based succinate industry. Appl. Microbiol. Biotechnol. 76: 727–740.

    Article  CAS  PubMed  Google Scholar 

  9. Zeikus, J., M. Jain, and P. Elankovan (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl. Microbiol. Biotechnol. 51: 545–552.

    Article  CAS  Google Scholar 

  10. Xiaozhan, L., Z. Wenming, W. Mingke, X. Fengxue, D. Weiliang, W. Hao, Z. Min, M. Jiangfeng, and J. Min (2017) Performance and mechanism analysis of succinate production under different transporters in Escherichia coli. Biotech. Bioprocess. Eng. 22: 529–538.

    Article  Google Scholar 

  11. Cheng, K. K., G. Y. Wang, J. Zeng, and J. A. Zhang (2013) Improved succinate production by metabolic engineering. Biomed. Res. Int. 2013: 538790.

  12. Wang, D., Q. Li, W. Li, J. Xing, and Z. Su (2009) Improvement of succinate production by overexpression of a cyanobacterial carbonic anhydrase in Escherichia coli. Enzyme Microb. Technol. 45: 491–497.

    Article  CAS  Google Scholar 

  13. Park, S., J. U. Lee, S. Cho, H. Kim, H. B. Oh, S. P. Pack, and J. Lee (2016) Increased incorporation of gaseous CO2 into succinate by Escherichia coli overexpressing carbonic anhydrase and phosphoenolpyruvate carboxylase genes. J. Biotechnol. 241: 101–107.

    Article  PubMed  Google Scholar 

  14. Jung, J. Y., S. H. Yun, D. K. Im, J.W. Lee, and M. K. Oh (2016) 13C metabolite profiling to compare the central metabolic flux in two yeast strains. Biotech. Bioprocess. Eng. 21: 814–822.

    CAS  Google Scholar 

  15. Kwon, Y., O. Kwon, H. Lee, and P. Kim (2007) The effect of NADP-dependent malic enzyme expression and anaerobic C4 metabolism in Escherichia coli compared with other anaplerotic enzymes. J. Appl. Microbiol. 103: 2340–2345.

    Article  CAS  PubMed  Google Scholar 

  16. Millard, C. S., Y. P. Chao, J. C. Liao, and M. I. Donnelly (1996) Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli. Appl. Environ. Microbiol. 62: 1808–1810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee, S. J., D. Y. Lee, T. Y. Kim, B. H. Kim, J. Lee, and S. Y. Lee (2005) Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Appl. Environ. Microbiol. 71: 7880–7887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwon Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Kim, H., Cho, S. et al. Enhanced Incorporation of Gaseous CO2 to Succinate by a Recombinant Escherichia coli W3110. Biotechnol Bioproc E 24, 103–108 (2019). https://doi.org/10.1007/s12257-018-0177-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0177-9

Keywords

Navigation