Skip to main content
Log in

Utilization of Organic Liquid Fertilizer in Microalgae Cultivation for Biodiesel Production

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The utilization of organic liquid fertilizer PAL-1 as the culture medium of the microalga Chlorella vulgaris was investigated for the purpose of biodiesel production. Cell growth and lipid accumulation in PAL-1 were evaluated and compared with those in the artificial medium BG-11. Cells showed mixotrophic growth when utilizing the organic liquid fertilizer PAL-1. The rates of cell growth (0.143 d-1) and N consumption (14.9 mg/L/d) in PAL-1 were almost the same as those in BG-11, under the presence of 2% CO2-enriched aeration and light irradiation. Lipid synthesis was triggered in PAL-1 on day 4, when nitrogen was completely consumed, and the lipid content reached up to 48% thereafter. Lipid productivity could be enhanced using repeated-batch cultivation in which cells were exposed to N limitation repeatedly, and thus lipid synthesis was induced while maintaining a sufficiently high cell density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Popp, J., Z. Lakner, M. Harangi–Rákos, and M. Fári (2014) The effect of bioenergy expansion: Food, energy, and environment. Renew. Sustain. Energy Rev. 32: 559–578.

    Article  Google Scholar 

  2. Rawat, I., R. Ranjith Kumar, T. Mutanda, and F. Bux (2013) Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl. Energ. 103: 444–467.

    Article  CAS  Google Scholar 

  3. Mata, T. M., A. A. Martins, and N. S. Caetano (2010) Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14: 217–232.

    Article  CAS  Google Scholar 

  4. Mujtaba, G. and K. Lee (2016) Advanced treatment of wastewater using symbiotic co–culture of microalgae and bacteria. Appl. Chem. Eng. 27: 1–6.

    Article  CAS  Google Scholar 

  5. Ventura, J. S., B. Yang, Y. W. Lee, K. Lee, and D. Jahng (2013) Life cycle analyses of CO2, energy, and cost for four different routes of microalgal bioenergy conversion. Bioresour. Technol. 137: 302–310.

    Article  CAS  PubMed  Google Scholar 

  6. Kothari, R., V. V. Pathak, V. Kumar, and D. P. Singh (2012) Experimental study for growth potential of unicellular alga Chlorella pyrenoidosa on dairy wastewater: an integrated approach for treatment and biofuel production. Bioresour. Technol. 116: 466–470.

    Article  CAS  PubMed  Google Scholar 

  7. Van den Hende, S., V. Beelen, G. Bore, N. Boon, and H. Vervaeren (2014) Up–scaling aquaculture wastewater treatment by microalgal bacterial flocs: from lab reactors to an outdoor raceway pond. Bioresour. Technol. 159: 342–354.

    Article  CAS  Google Scholar 

  8. Lam, M. K. and K. T. Lee (2012) Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production. Appl. Energ. 94: 303–308.

    Article  CAS  Google Scholar 

  9. Dang, N. M. and K. Lee (2018) Recent trends of using alternative nutrient sources for microalgae cultivation as a feedstock of biodiesel production. Appl. Chem. Eng. 29: 1–9.

    Google Scholar 

  10. Heredia–Arroyo, T., W. Wei, R. Ruan, and B. Hu (2011) Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non–sugar materials. Biomass Bioenerg. 35: 2245–2253.

    Article  CAS  Google Scholar 

  11. Ebrahimian, A., H. R. Kariminia, and M. Vosoughi (2014) Lipid production in mixotrophic cultivation of Chlorella vulgaris in a mixture of primary and secondary municipal wastewater. Renew. Energ. 71: 502–508.

    Article  CAS  Google Scholar 

  12. Mujtaba, G., W. Choi, C. G. Lee, and K. Lee (2012) Lipid production by Chlorella vulgaris after a shift from nutrient–rich to nitrogen starvation conditions. Bioresour. Technol. 123: 279–283.

    Article  CAS  PubMed  Google Scholar 

  13. Kim, G., J. Bae, and K. Lee (2016) Nitrate repletion strategy for enhancing lipid production from marine microalga Tetraselmis sp. Bioresour. Technol. 205: 274–279.

    Article  CAS  PubMed  Google Scholar 

  14. APHA–AWWA–WEF (1995) Standard Methods for the Examination of Water and Wastewater: 19th ed, Washington DC,USA.

    Google Scholar 

  15. Bligh, E. G. and W. J. Dyer (1959) A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917.

    Article  CAS  PubMed  Google Scholar 

  16. Van Wychen, S., K. Ramirez, and L. M. Laurens (2013) Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ Transesterification. Laboratory Analytical Procedure. p. 12. National Renewable Energy Laboratory, Golden, CO,USA.

    Google Scholar 

  17. Hu, Q. (2013) Environmental effects on cell composition. pp. 114–122. In: A. Richmond, and Q. Hu (eds.). Handbook of Microalgal Culture: Applied Phycology and Biotechnology. Wiley Blackwell, UK.

  18. Li, Y., F. Han, H. Xu, J. Mu, D. Chen, B. Feng, and H. Zeng (2014) Potential lipid accumulation and growth characteristic of the green alga Chlorella with combination cultivation mode of nitrogen (N) and phosphorus (P). Bioresour. Technol. 174: 24–32.

    Article  CAS  PubMed  Google Scholar 

  19. Griffiths, M. J., R. P. V. Hille, and S. T. L. Harrison (2014) The effect of nitrogen limitation on lipid productivity and cell composition in Chlorella vulgaris. Appl. Microbiol. Biotechnol. 98: 2345–2356.

    Article  CAS  PubMed  Google Scholar 

  20. Shen, Q. H., Y. P. Gong, W. Z. Fang, L. H. Cheng, X. H. Xu, and H. L. Chen (2015) Saline wastewater treatment by Chlorella vulgaris with simultaneous algal lipid accumulation triggered by nitrate deficiency. Bioresour. Technol. 193: 68–75.

    Article  CAS  PubMed  Google Scholar 

  21. Dang, N. M. and K. Lee (2018) Decolorization of organic fertilizer using advanced oxidation process and its application for microalgae cultivation. J. Ind. Eng. Chem. 59: 297–303.

    Article  CAS  Google Scholar 

  22. Patidar, S. K., M. Mitra, B. George, R. Soundarya, and S. Mishra (2014) Potential of Monoraphidium minutum for carbon sequestration and lipid production in response to varying growth mode. Bioresour. Technol. 172: 32–40.

    Article  CAS  PubMed  Google Scholar 

  23. Mujtaba, G., M. Rizwan, and K. Lee (2017) Removal of nutrients and COD from wastewater using symbiotic co–culture of bacterium Pseudomonas putida and immobilized microalga Chlorella vulgaris. J. Ind. Eng. Chem. 49: 145–151.

    Article  CAS  Google Scholar 

  24. Hong, S.-J., Y. S. Park, M.-A. Han, Z–H. Kim, B.-K. Cho, H. Lee, H.-K. Choi, and C.-G. Lee (2017) Enhanced production of fatty acids in three strains of microalgae using a combination of nitrogen starvation and chemical inhibitors of carbohydrate synthesis. Biotechnol. Bioprocess Eng. 22: 60–67.

    Article  CAS  Google Scholar 

  25. Zhu, L.-D., Z.-H. Li, D.-B. Guo, F. Huang, Y. Nugroho, and K. Xia (2017) Cultivation of Chlorella sp. with livestock waste compost for lipid production. Bioresour. Technol. 223: 296–300.

    Article  CAS  PubMed  Google Scholar 

  26. Kim, D. G. and S. B. Hur (2013) Growth and fatty acid composition of three heterotrophic Chlorella species. Alga. 28: 101–109.

    Article  CAS  Google Scholar 

  27. Lu, W., Z. Wang, X. Wang, and Z. Yuan (2015) Cultivation of Chlorella sp. using raw dairy wastewater for nutrient removal and biodiesel production: characteristics comparison of indoor bench–scale and outdoor pilot–scale cultures. Bioresour. Technol. 192: 382–388.

    Article  CAS  PubMed  Google Scholar 

  28. Hong, S., W. J. Lee, and S. B. Lee (2017) Optimization of waste cooking oil–based biodiesel production process using central composite design model. Appl. Chem. Eng. 28: 559–564.

    Google Scholar 

  29. Rizwan, M., G. Mujtaba, and K. Lee (2017) Effects of iron sources on the growth and lipid/carbohydrate production of marine microalga Dunaliella tertiolecta. Biotechnol. Bioprocess Eng. 22: 68–75.

    Article  CAS  Google Scholar 

  30. Ramos, M. J., C. M. Fernández, A. Casas, L. Rodríguez, and Á. Pérez (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour. Technol. 100: 261–268.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This research was supported by a grant from the Marine Biotechnology Program (PJT200255, Development of Marine Microalgal Biofuel Production Technology) funded by the Ministry of Oceans and Fisheries of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kisay Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, N.M., Lee, K. Utilization of Organic Liquid Fertilizer in Microalgae Cultivation for Biodiesel Production. Biotechnol Bioproc E 23, 405–414 (2018). https://doi.org/10.1007/s12257-018-0081-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0081-3

Keywords

Navigation