Biotechnology and Bioprocess Engineering

, Volume 22, Issue 6, pp 700–708 | Cite as

Targeted cowpea chlorotic mottle virus-based nanoparticles with tumor-homing peptide F3 for photothermal therapy

  • Yuanzheng Wu
  • Jishun Li
  • Hetong Yang
  • Jihyoun Seoung
  • Ho-Dong Lim
  • Geun-Joong Kim
  • Hyun-Jae Shin
Research Paper
  • 26 Downloads

Abstract

Our aim was to devise targeted drug delivery systems using genetically modified cowpea chlorotic mottle virus (CCMV) capsids by fusion expression with tumorhoming peptide F3 for efficient delivery of therapeutic substances into tumor cells. The RNA-binding domain at the N terminus (amino acid residues 1–25) of CCMV capsid protein (CP) was selectively deleted, and F3 was inserted for the expression in Pichia pastoris. After chromatographic purification, F3-CCMV capsids were obtained via selfassembly of the F3-CP fusion protein and then analyzed by transmission electron microscopy and dynamic light scattering analysis, which revealed spherical nanoparticles (NPs) ca. 18 nm in diameter with regular monodispersity. Near-infrared fluorescent dye IR780 iodide, which has been applied for cancer imaging, photodynamic therapy, and photothermal therapy, was encapsulated in F3-CCMV NPs. The resultant F3-CCMV-IR780 NPs showed excellent molecular targeting to nucleolin receptor overexpressed on the surface of MCF-7 tumor cells. Furthermore, the in vitro cellular uptake and cell viability assay proved a photothermal effect by a single dose of near-infrared laser irradiation. The present system may offer a programmable nanoscaffoldbased drug delivery system vehicle for fabrication of promising therapeutic substances for cancer therapy.

Keywords

CCMV NIR dye tumor-homing drug delivery photothermal therapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, T. M. and P. R. Cullis (2004) Drug delivery systems: Entering the mainstream. Sci. 303: 1818–1822.CrossRefGoogle Scholar
  2. 2.
    Zhang, Y., H. F. Chan, and K. W. Leong (2013) Advanced materials and processing for drug delivery: The past and the future. Adv. Drug Deliv. Rev. 65: 104–120.CrossRefGoogle Scholar
  3. 3.
    Ma, Y., R. J. Nolte, and J. J. Cornelissen (2012) Virus-based nanocarriers for drug delivery. Adv. Drug Deliv. Rev. 64: 811–825.CrossRefGoogle Scholar
  4. 4.
    Miest, T. S. and R. Cattaneo (2014) New viruses for cancer therapy: Meeting clinical needs. Nat. Rev. Microbiol. 12: 23–34.CrossRefGoogle Scholar
  5. 5.
    Galdiero, S., A. Falanga, M. Vitiello, P. Grieco, M. Caraglia, G. Morelli, and M. Galdiero (2014) Exploitation of viral properties for intracellular delivery. J. Pept. Sci. 20: 468–478.CrossRefGoogle Scholar
  6. 6.
    Fischlechner, M. and E. Donath (2007) Viruses as building blocks for materials and devices. Angew. Chem. Int. Edit. 46: 3184–3193.CrossRefGoogle Scholar
  7. 7.
    Strable, E. and M. G. Finn (2009) Chemical modification of viruses and virus-like particles. Curr. Top. Microbiol. Immunol. 327: 1–21.Google Scholar
  8. 8.
    Wu, Y., H. Yang, and H. J. Shin (2013) Viruses as self-assembled nanocontainers for encapsulation of functional cargos. Kor. J. Chem. Eng. 30: 1359–1367.CrossRefGoogle Scholar
  9. 9.
    Liu, Z., J. Qiao, Z. Niu, and Q. Wang (2012) Natural supramolecular building blocks: From virus coat proteins to viral nanoparticles. Chem. Soc. Rev. 41: 6178–6194.CrossRefGoogle Scholar
  10. 10.
    Grgacic, E. V. and D. A. Anderson (2006) Virus-like particles: Passport to immune recognition. Methods 40: 60–65.CrossRefGoogle Scholar
  11. 11.
    Flynn, C. E., S. W. Lee, B. R. Peelle, and A. M. Belcher (2003) Viruses as vehicles for growth, organization and assembly of materials. Acta Mater. 51: 5867–5880.CrossRefGoogle Scholar
  12. 12.
    Zlotnick, A., R. Aldrich, J. M. Johnson, P. Ceres, and M. J. Young (2000) Mechanism of capsid assembly for an icosahedral plant virus. Virol. 277: 450–456.CrossRefGoogle Scholar
  13. 13.
    Comellas-Aragonès, M., H. Engelkamp, V. I. Claessen, N. A. Sommerdijk, A. E. Rowan, P. C. Christianen, J. C. Maan, B. J. Verduin, J. J. Cornelissen, and R. J. Nolte (2007) A virus-based single-enzyme nanoreactor. Nat. Nanotechnol. 2: 635–639.CrossRefGoogle Scholar
  14. 14.
    Allen, M., J. W. Bulte, L. Liepold, G. Basu, H. A. Zywicke, J. A. Frank, M. Young, and T. Douglas (2005) Paramagnetic viral nanoparticles as potential high-relaxivity magnetic resonance contrast agents. Magn. Reson. Med. 54: 807–812.CrossRefGoogle Scholar
  15. 15.
    Zhang, D., R. Konecny, N. A. Baker, and J. A. McCammon (2004) Electrostatic interaction between RNA and protein capsid in cowpea chlorotic mottle virus simulated by a coarse-grain RNA model and a Monte Carlo approach. Biopolym. 75: 325–337.CrossRefGoogle Scholar
  16. 16.
    Minten, I. J., Y. Ma, M. A. Hempenius, G. J. Vancso, R. J. Nolte, and J. J. Cornelissen (2009) CCMV capsid formation induced by a functional negatively charged polymer. Org. Biomol. Chem. 7: 4685–4688.CrossRefGoogle Scholar
  17. 17.
    Brasch, M., A. de la Escosura, Y. Ma, C. Uetrecht, A. J. Heck, T. Torres, and J. J. Cornelissen (2011) Encapsulation of phthalocyanine supramolecular stacks into virus-like particles. J. Am. Chem. Soc. 133: 6878–6881.CrossRefGoogle Scholar
  18. 18.
    Setaro, F., M. Brasch, U. Hahn, M. S. Koay, J. J. Cornelissen, A. de la Escosura, and T. Torres (2015) Generation-dependent templated self-assembly of biohybrid protein nanoparticles around photosensitizer dendrimers. Nano Lett. 15: 1245–1251.CrossRefGoogle Scholar
  19. 19.
    Ma, Y., J. Huang, S. Song, H. Chen, and Z. Zhang (2016) Cancertargeted nanotheranostics: Recent advances and perspectives. Small 12: 4936–4954.CrossRefGoogle Scholar
  20. 20.
    Kaiser, C. R., M. L. Flenniken, E. Gillitzer, A. L. Harmsen, A. G. Harmsen, M. A. Jutila, T. Douglas, and M. J. Young (2007) Biodistribution studies of protein cage nanoparticles demonstrate broad tissue distribution and rapid clearance in vivo. Int. J. Nanomed. 2: 715.Google Scholar
  21. 21.
    Ruoslahti, E. (2012) Peptides as targeting elements and tissue penetration devices for nanoparticles. Adv. Mater. 24: 3747–3756.CrossRefGoogle Scholar
  22. 22.
    McCarthy, J. R. and R. Weissleder (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Deliv. Rev. 60: 1241–1251.CrossRefGoogle Scholar
  23. 23.
    Svensen, N., J. G. Walton, and M. Bradley (2012) Peptides for cell-selective drug delivery. Trends Pharmacol. Sci. 33: 186–192.CrossRefGoogle Scholar
  24. 24.
    Porkka, K., P. Laakkonen, J. A. Hoffman, M. Bernasconi, and E. Ruoslahti (2002) A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo. Proc. Natl. Acad. Sci. USA. 99: 7444–7449.CrossRefGoogle Scholar
  25. 25.
    Christian, S., J. Pilch, M. E. Akerman, K. Porkka, P. Laakkonen, and E. Ruoslahti (2003) Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J. Cell Biol. 163: 871–878.CrossRefGoogle Scholar
  26. 26.
    Ruoslahti, E., T. Duza, and L. Zhang (2005) Vascular homing peptides with cell-penetrating properties. Curr. Pharm. Des. 11: 3655–3660.CrossRefGoogle Scholar
  27. 27.
    Zhang, Y., M. Yang, J. H. Park, J. Singelyn, H. Ma, M. J. Sailor, E. Ruoslahti, M. Ozkan, and C. Ozkan (2009) A surface-charge study on cellular-uptake behavior of F3-peptide-conjugated iron oxide nanoparticles. Small 5: 1990–1996.CrossRefGoogle Scholar
  28. 28.
    Reddy, G. R., M. S. Bhojani, P. McConville, J. Moody, B. A. Moffat, D. E. Hall, G. Kim, Y. L. Koo, M. J. Woolliscroft, J. V. Sugai, T. D. Johnson, M. A. Philbert, R. Kopelman, A. Rehemtulla, and B. D. Ross (2006) Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin. Cancer Res. 12: 6677–6686.CrossRefGoogle Scholar
  29. 29.
    Hu, Q., G. Gu, Z. Liu, M. Jiang, T. Kang, D. Miao, Y. Tu, Z. Pang, Q. Song, L. Yao, H. Xia, H. Chen, X. Jiang, X. Gao, and J. Chen (2013) F3 peptide-functionalized PEG-PLA nanoparticles co-administrated with tLyp-1 peptide for anti-glioma drug delivery. Biomat. 34: 1135–1145.CrossRefGoogle Scholar
  30. 30.
    Wu, Y., H. Yang, and H. J. Shin (2011) Expression and selfassembly of cowpea chlorotic mottle virus capsid proteins in Pichia pastoris and encapsulation of fluorescent myoglobin. Mater. Res. Soc. Symp. Proc. Doi: 10.1557/opl.2011.138.Google Scholar
  31. 31.
    Wu, Y., H. Yang, and H. J. Shin (2013) Encapsulation and crystallization of Prussian blue nanoparticles by cowpea chlorotic mottle virus capsids. Biotechnol. Lett. 36: 515–521.CrossRefGoogle Scholar
  32. 32.
    Wu, Y., H. Yang, Y. J. Jeon, M. Y. Lee, J. Li, and H. J. Shin (2014) Surface modification of cowpea chlorotic mottle virus capsids via a copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction and their adhesion behavior with HeLa cells. Biotechnol. Bioproc. Eng. 19: 747–753.CrossRefGoogle Scholar
  33. 33.
    van Eldijk, M. B., J. C. Wang, I. J. Minten, C. Li, A. Zlotnick, R. J. Nolte, J. J. Cornelissen, and J. C. van Hest (2012) Designing two self-assembly mechanisms into one viral capsid protein. J. Am. Chem. Soc. 134: 18506–18509.CrossRefGoogle Scholar
  34. 34.
    Ali, A. and M. J. Roossinck (2007) Rapid and efficient purification of cowpea chlorotic mottle virus by sucrose cushion ultracentrifugation. J. Virol. Methods 141: 84–86.CrossRefGoogle Scholar
  35. 35.
    Tang, J., J. M. Johnson, K. A. Dryden, M. J. Young, A, Zlotnick, and J. E. Johnson (2006) The role of subunit hinges and molecular “switches” in the control of viral capsid polymorphism. J. Struct. Biol. 154: 59–67.CrossRefGoogle Scholar
  36. 36.
    Brumfield, S., D. Willits, L. Tang, J. E. Johnson, T. Douglas, and M. Young (2004) Heterologous expression of the modified coat protein of cowpea chlorotic mottle bromovirus results in the assembly of protein cages with altered architectures and function. J. Gen. Virol. 85: 1049–1053.CrossRefGoogle Scholar
  37. 37.
    van Eldijk, M. B., L. Schoonen, J. J. Cornelissen, R. J. Nolte, and J. C. van Hest (2016) Metal ion-induced self-assembly of a multiresponsive block copolypeptide into well-defined nanocapsules. Small 12: 2476–2483.CrossRefGoogle Scholar
  38. 38.
    Young, L. and Q. Dong (2004) Two-step total gene synthesis method. Nucleic Acids Res. 32: e59-e59.CrossRefGoogle Scholar
  39. 39.
    Ahmad, M., M. Hirz, H. Pichler, and H. Schwab (2014) Protein expression in Pichia pastoris: Recent achievements and perspectives for heterologous protein production. Appl. Microbiol. Biotechnol. 98: 5301–5317.CrossRefGoogle Scholar
  40. 40.
    Minten, I. J., K. D. Wilke, L. J. Hendriks, J. van Hest, R. J. Nolte, and J. J. Cornelissen (2011) Metal-ion-induced formation and stabilization of protein cages based on the Cowpea chlorotic mottle virus. Small 7: 911–919.CrossRefGoogle Scholar
  41. 41.
    Yuan, A., J. Wu, X. Tang, L. Zhao, F. Xu, and Y. Hu (2013) Application of near-infrared dyes for tumor imaging, photothermal, and photodynamic therapies. J. Pharm. Sci. 102: 6–28.CrossRefGoogle Scholar
  42. 42.
    Wang, K., Y. Zhang, J. Wang, A. Yuan, M. Sun, J. Wu, and Y. Hu (2016) Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Sci. Rep. 6: 27421.CrossRefGoogle Scholar
  43. 43.
    Jiang, C., H. Cheng, A. Yuan, X. Tang, J. Wu, and Y. Hu (2015) Hydrophobic IR780 encapsulated in biodegradable human serum albumin nanoparticles for photothermal and photodynamic therapy. Acta Biomater. 14: 61–69.CrossRefGoogle Scholar
  44. 44.
    Inoue, T., P. G. Cavanaugh, P. A. Steck, N. Brünner, and G. L. Nicolson (1993) Differences in transferrin response and numbers of transferrin receptors in rat and human mammary carcinoma lines of different metastatic potentials. J. Cell. Physiol. 156: 212–217.CrossRefGoogle Scholar
  45. 45.
    Orringer, D. A., Y. E. Koo, T. Chen, G. Kim, H. J. Hah, H. Xu, S. Wang, R. Keep, M. A. Philbert, R. Kopelman, and O. Sagher (2009) In vitro characterization of a targeted, dye-loaded nanodevice for intraoperative tumor delineation. Neurosurg. 64: 965–972.CrossRefGoogle Scholar
  46. 46.
    Cheng, L., C. Wang, L. Feng, K. Yang, and Z. Liu (2014) Functional nanomaterials for phototherapies of cancer. Chem. Rev. 114: 10869–10939.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Yuanzheng Wu
    • 1
    • 2
  • Jishun Li
    • 2
  • Hetong Yang
    • 2
  • Jihyoun Seoung
    • 3
  • Ho-Dong Lim
    • 3
  • Geun-Joong Kim
    • 3
  • Hyun-Jae Shin
    • 1
  1. 1.Department of Biochemical and Polymer EngineeringChosun UniversityGwangjuKorea
  2. 2.Ecology InstituteQilu University of Technology (Shandong Academy of Sciences)JinanChina
  3. 3.Department of Biological Sciences, College of Natural SciencesChonnam National UniversityGwangjuKorea

Personalised recommendations