Skip to main content
Log in

Biotransformation of fatty acid-rich tree oil hydrolysates to hydroxy fatty acid-rich hydrolysates by hydroxylases and their feasibility as biosurfactants

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The fatty acid compositions of 10 types of tree oils were analyzed and Camellia japonica (CJ), Tetradium daniellii (TD), and Hovenia dulcis (HD) tree oils were selected to be oleic acid (OA)-, linoleic acid (LA)-, and α-linoleic acid (ALA)-rich tree oils, respectively. Recombinant Escherichia coli expressing 10-hydratase and 7,8-diol synthase converted 31.7 and 15.6 g/L unsaturated fatty acids (UFAs) in OA-rich oil hydrolysates to 21.7 g/L 10-monohydroxy fatty acid (monoHFA) and 13.3 g/L 7,8-diHFA, respectively. The cells expressing 13-hydratase, 13-lipoxygenase, 5,8-diol synthase, and 8,11-diol synthase converted 42.8, 28.5, 10.0, and 20.0 g/L UFAs in LA-rich oil hydrolysates to 28.2 g/L 13-monoHFA, 11.8 g/L 13-monoHFA, 7.2 g/L 5,8-diHFA, and 8.9 g/L 8,11-diHFA, respectively. The cells expressing 8,11-diol synthase converted containing 17.5 g/L UFAs in ALA-rich oil hydrolysate to 7.5 g/L 8,11-diHFA. The average emulsifying activities of diHFArich and monoHFA-rich tree oil hydrolysates were 13.9- and 4.3-fold higher than those of tree oil hydrolysates, respectively. Thus, HFA-rich tree oil hydrolysates derived from tree oils can be applied as biosurfactants, and the fatty acid-rich residue as by-product obtained from the tree refinery process may be recycled into biosurfactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, K. R. and D. K. Oh (2013) Production of hydroxy fatty acids by microbial fatty acid-hydroxylation enzymes. Biotechnol. Adv. 31: 1473–1485.

    Article  CAS  PubMed  Google Scholar 

  2. Hou, C. T. (2000) Biotransformation of unsaturated fatty acids to industrial products. Adv. Appl. Microbiol. 47: 201–220.

    Article  CAS  PubMed  Google Scholar 

  3. Aburjai, T. and F. M. Natsheh (2003) Plants used in cosmetics. Phytother. Res. 17: 987–1000.

    Article  PubMed  Google Scholar 

  4. Hammer, K. A., C. F. Carson, and T. V. Riley (1999) Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 86: 985–990.

    Article  CAS  PubMed  Google Scholar 

  5. Bakkali, F., S. Averbeck, D. Averbeck, and M. Idaomar (2008) Biological effects of essential oils-A review. Food Chem. Toxicol. 46: 446–475.

    Article  CAS  PubMed  Google Scholar 

  6. Seo, M. J., W. R. Kang, K. C. Shin, and D. K. Oh (2016) Production of 7,8-dihydroxy unsaturated fatty acids from plant oils by whole recombinant cells expressing 7,8-linoleate diol synthase from Glomerella cingulata. J. Agric. Food. Chem. 64: 8555–8562.

    Article  CAS  PubMed  Google Scholar 

  7. Joo, Y. C., K. W. Jeong, S. J. Yeom, Y. S. Kim, Y. Kim, and D. K. Oh (2012) Biochemical characterization and FAD-binding analysis of oleate hydratase from Macrococcus caseolyticus. Biochim. 94: 907–915.

    Article  CAS  Google Scholar 

  8. Ivanov, I., D. Heydeck, K. Hofheinz, J. Roffeis, V. B. O’Donnell, H. Kuhn, and M. Walther (2010) Molecular enzymology of lipoxygenases. Arch. Biochem. Biophys. 503: 161–174.

    Article  CAS  PubMed  Google Scholar 

  9. Banat, I. M., R. S. Makkar, and S. S. Cameotra (2000) Potential commercial applications of microbial surfactants. Appl. Microbiol. Biot. 53: 495–508.

    Article  CAS  Google Scholar 

  10. Seo, M. J., K. C. Shin, J. U. An, W. R. Kang, Y. J. Ko, and D. K. Oh (2016) Characterization of a recombinant 7,8-linoleate diol synthase from Glomerella cingulate. Appl. Microbiol. Biot. 100: 3087–3099.

    Article  CAS  Google Scholar 

  11. Park, J. Y., S. H. Lee, K. R. Kim, J. B. Park, and D. K. Oh (2015) Production of 13S-hydroxy-9(Z)-octadecenoic acid from linoleic acid by whole recombinant cells expressing linoleate 13-hydratase from Lactobacillus acidophilus. J. Biotechnol. 208: 1–10.

    Article  CAS  PubMed  Google Scholar 

  12. Seo, M. J., K. C. Shin, and D. K. Oh (2014) Production of 5,8-dihydroxy-9,12(Z,Z)-octadecadienoic acid from linoleic acid by whole recombinant Escherichia coli cells expressing diol synthase from Aspergillus nidulans. Appl. Microbiol. Biot. 98: 7447–7456.

    Article  CAS  Google Scholar 

  13. An, J. U., B. J. Kim, S. H. Hong, and D. K. Oh (2015) Characterization of an omega-6 linoleate lipoxygenase from Burkholderia thailandensis and its application in the production of 13-hydroxyoctadecadienoic acid. Appl. Microbiol. Biot. 99: 5487–5497.

    Article  CAS  Google Scholar 

  14. Kang, W. R., M. J. Seo, K. C. Shin, J. B. Park, and D. K. Oh (2017) Comparison of biochemical properties of the original and newly identified oleate hydratases from Stenotrophomonas maltophilia. Appl. Environ. Microbiol. 83: e0335116.

    Article  Google Scholar 

  15. Joo, Y. C., E. S. Seo, Y. S. Kim, K. R. Kim, J. B. Park, and D. K. Oh (2012) Production of 10-hydroxystearic acid from oleic acid by whole cells of recombinant Escherichia coli containing oleate hydratase from Stenotrophomonas maltophilia. J. Biotechnol. 158: 17–23.

    Article  CAS  PubMed  Google Scholar 

  16. Kim, M. J., M. J. Seo, K. C. Shin, and D. K. Oh (2017) Production of 8,11-dihydroxy and 8-hydroxy unsaturated fatty acids from unsaturated fatty acids by recombinant Escherichia coli expressing 8,11-linoleate diol synthase from Penicillium chrysogenum. Biotechnol. Prog. 33: 390–396.

    Article  CAS  PubMed  Google Scholar 

  17. Sim, D. H., K. C. Shin, and D. K. Oh (2015) 13-Hydroxy-9Z,11E-octadecadienoic acid production by recombinant cells expressing Burkholderia thailandensis 13-lipoxygenase. J. Amer. Oil. Chem. Soc. 92: 1259–1266.

    Article  CAS  Google Scholar 

  18. Kitamoto, D., T. Ikegami, G. T. Suzuki, A. Sasaki, Y. I. Takeyama, Y. Idemoto, N. Koura, and H. Yanagishita (2001) Microbial conversion of n-alkanes into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma (Candida antarctica). Biotechnol. Lett. 23: 1709–1714.

    Article  CAS  Google Scholar 

  19. Atabani, A. E., A. S. Silitonga, H. C. Ong, T. M. I. Mahlia, H. H. Masjuki, I. A. Badruddin, and H. Fayaz (2013) Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew. Sust. Energ. Rev. 18: 211–245.

    Article  CAS  Google Scholar 

  20. Zhang, L., B. Jia, X. Tan, C. S. Thammina, H. Long, M. Liu, S. Wen, X. Song, and H. Cao (2014) Fatty acid profile and unigene-derived simple sequence repeat markers in tung tree (Vernicia fordii). PLoS One 9: e105298.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tang, L., J. N. Hu, X. M. Zhu, L. P. Luo, L. Lei, Z. Y. Deng, and K. T. Lee (2012) Enzymatic interesterification of palm stearin with Cinnamomum camphora seed oil to produce zero-trans medium-chain triacylglycerols-enriched plastic fat. J. Food. Sci. 77: C454–C460.

    Article  CAS  PubMed  Google Scholar 

  22. Kang, W. R., M. J. Seo, K. C. Shin, J. B. Park, and D. K. Oh (2017) Gene cloning of an efficiency oleate hydratase from Stenotrophomonas nitritireducens for polyunsaturated fatty acids and its application in the conversion of plant oils to 10-hydroxy fatty acids. Biotechnol. Bioeng. 114: 74–82.

    Article  CAS  PubMed  Google Scholar 

  23. Quan, L. H., Y. Jin, C. Wang, J. W. Min, Y. J. Kim, and D. C. Yang (2012) Enzymatic transformation of the major ginsenoside Rb2 to minor compound Y and compound K by a ginsenosidehydrolyzing β-glycosidase from Microbacterium esteraromaticum. J. Ind. Microbiol. Biot. 39: 1557–1562.

    Article  CAS  Google Scholar 

  24. Seo, M. H., K. R. Kim, and D. K. Oh (2013) Production of a novel compound, 10,12-dihydroxystearic acid from ricinoleic acid by an oleate hydratase from Lysinibacillus fusiformis. Appl. Microbiol. Biot. 97: 8987–8995.

    Article  CAS  Google Scholar 

  25. Smolinske, S. C. (1992) Handbook of food, drug, and cosmetic excipients. pp. 247–248. CRC, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deok-Kun Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, JH., Seo, MJ., Lee, KT. et al. Biotransformation of fatty acid-rich tree oil hydrolysates to hydroxy fatty acid-rich hydrolysates by hydroxylases and their feasibility as biosurfactants. Biotechnol Bioproc E 22, 709–716 (2017). https://doi.org/10.1007/s12257-017-0374-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0374-y

Keywords

Navigation