Advertisement

Biotechnology and Bioprocess Engineering

, Volume 22, Issue 6, pp 709–716 | Cite as

Biotransformation of fatty acid-rich tree oil hydrolysates to hydroxy fatty acid-rich hydrolysates by hydroxylases and their feasibility as biosurfactants

  • Ji-Hyeon Choi
  • Min-Ju Seo
  • Kyung-Tae Lee
  • Deok-Kun Oh
Research Paper
  • 66 Downloads

Abstract

The fatty acid compositions of 10 types of tree oils were analyzed and Camellia japonica (CJ), Tetradium daniellii (TD), and Hovenia dulcis (HD) tree oils were selected to be oleic acid (OA)-, linoleic acid (LA)-, and α-linoleic acid (ALA)-rich tree oils, respectively. Recombinant Escherichia coli expressing 10-hydratase and 7,8-diol synthase converted 31.7 and 15.6 g/L unsaturated fatty acids (UFAs) in OA-rich oil hydrolysates to 21.7 g/L 10-monohydroxy fatty acid (monoHFA) and 13.3 g/L 7,8-diHFA, respectively. The cells expressing 13-hydratase, 13-lipoxygenase, 5,8-diol synthase, and 8,11-diol synthase converted 42.8, 28.5, 10.0, and 20.0 g/L UFAs in LA-rich oil hydrolysates to 28.2 g/L 13-monoHFA, 11.8 g/L 13-monoHFA, 7.2 g/L 5,8-diHFA, and 8.9 g/L 8,11-diHFA, respectively. The cells expressing 8,11-diol synthase converted containing 17.5 g/L UFAs in ALA-rich oil hydrolysate to 7.5 g/L 8,11-diHFA. The average emulsifying activities of diHFArich and monoHFA-rich tree oil hydrolysates were 13.9- and 4.3-fold higher than those of tree oil hydrolysates, respectively. Thus, HFA-rich tree oil hydrolysates derived from tree oils can be applied as biosurfactants, and the fatty acid-rich residue as by-product obtained from the tree refinery process may be recycled into biosurfactants.

Keywords

tree oil hydrolysate biosurfactant diol synthase hydratase lipoxygenase emulsifying activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kim, K. R. and D. K. Oh (2013) Production of hydroxy fatty acids by microbial fatty acid-hydroxylation enzymes. Biotechnol. Adv. 31: 1473–1485.CrossRefPubMedGoogle Scholar
  2. 2.
    Hou, C. T. (2000) Biotransformation of unsaturated fatty acids to industrial products. Adv. Appl. Microbiol. 47: 201–220.CrossRefPubMedGoogle Scholar
  3. 3.
    Aburjai, T. and F. M. Natsheh (2003) Plants used in cosmetics. Phytother. Res. 17: 987–1000.CrossRefPubMedGoogle Scholar
  4. 4.
    Hammer, K. A., C. F. Carson, and T. V. Riley (1999) Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 86: 985–990.CrossRefPubMedGoogle Scholar
  5. 5.
    Bakkali, F., S. Averbeck, D. Averbeck, and M. Idaomar (2008) Biological effects of essential oils-A review. Food Chem. Toxicol. 46: 446–475.CrossRefPubMedGoogle Scholar
  6. 6.
    Seo, M. J., W. R. Kang, K. C. Shin, and D. K. Oh (2016) Production of 7,8-dihydroxy unsaturated fatty acids from plant oils by whole recombinant cells expressing 7,8-linoleate diol synthase from Glomerella cingulata. J. Agric. Food. Chem. 64: 8555–8562.CrossRefPubMedGoogle Scholar
  7. 7.
    Joo, Y. C., K. W. Jeong, S. J. Yeom, Y. S. Kim, Y. Kim, and D. K. Oh (2012) Biochemical characterization and FAD-binding analysis of oleate hydratase from Macrococcus caseolyticus. Biochim. 94: 907–915.CrossRefGoogle Scholar
  8. 8.
    Ivanov, I., D. Heydeck, K. Hofheinz, J. Roffeis, V. B. O’Donnell, H. Kuhn, and M. Walther (2010) Molecular enzymology of lipoxygenases. Arch. Biochem. Biophys. 503: 161–174.CrossRefPubMedGoogle Scholar
  9. 9.
    Banat, I. M., R. S. Makkar, and S. S. Cameotra (2000) Potential commercial applications of microbial surfactants. Appl. Microbiol. Biot. 53: 495–508.CrossRefGoogle Scholar
  10. 10.
    Seo, M. J., K. C. Shin, J. U. An, W. R. Kang, Y. J. Ko, and D. K. Oh (2016) Characterization of a recombinant 7,8-linoleate diol synthase from Glomerella cingulate. Appl. Microbiol. Biot. 100: 3087–3099.CrossRefGoogle Scholar
  11. 11.
    Park, J. Y., S. H. Lee, K. R. Kim, J. B. Park, and D. K. Oh (2015) Production of 13S-hydroxy-9(Z)-octadecenoic acid from linoleic acid by whole recombinant cells expressing linoleate 13-hydratase from Lactobacillus acidophilus. J. Biotechnol. 208: 1–10.CrossRefPubMedGoogle Scholar
  12. 12.
    Seo, M. J., K. C. Shin, and D. K. Oh (2014) Production of 5,8-dihydroxy-9,12(Z,Z)-octadecadienoic acid from linoleic acid by whole recombinant Escherichia coli cells expressing diol synthase from Aspergillus nidulans. Appl. Microbiol. Biot. 98: 7447–7456.CrossRefGoogle Scholar
  13. 13.
    An, J. U., B. J. Kim, S. H. Hong, and D. K. Oh (2015) Characterization of an omega-6 linoleate lipoxygenase from Burkholderia thailandensis and its application in the production of 13-hydroxyoctadecadienoic acid. Appl. Microbiol. Biot. 99: 5487–5497.CrossRefGoogle Scholar
  14. 14.
    Kang, W. R., M. J. Seo, K. C. Shin, J. B. Park, and D. K. Oh (2017) Comparison of biochemical properties of the original and newly identified oleate hydratases from Stenotrophomonas maltophilia. Appl. Environ. Microbiol. 83: e0335116.CrossRefGoogle Scholar
  15. 15.
    Joo, Y. C., E. S. Seo, Y. S. Kim, K. R. Kim, J. B. Park, and D. K. Oh (2012) Production of 10-hydroxystearic acid from oleic acid by whole cells of recombinant Escherichia coli containing oleate hydratase from Stenotrophomonas maltophilia. J. Biotechnol. 158: 17–23.CrossRefPubMedGoogle Scholar
  16. 16.
    Kim, M. J., M. J. Seo, K. C. Shin, and D. K. Oh (2017) Production of 8,11-dihydroxy and 8-hydroxy unsaturated fatty acids from unsaturated fatty acids by recombinant Escherichia coli expressing 8,11-linoleate diol synthase from Penicillium chrysogenum. Biotechnol. Prog. 33: 390–396.CrossRefPubMedGoogle Scholar
  17. 17.
    Sim, D. H., K. C. Shin, and D. K. Oh (2015) 13-Hydroxy-9Z,11E-octadecadienoic acid production by recombinant cells expressing Burkholderia thailandensis 13-lipoxygenase. J. Amer. Oil. Chem. Soc. 92: 1259–1266.CrossRefGoogle Scholar
  18. 18.
    Kitamoto, D., T. Ikegami, G. T. Suzuki, A. Sasaki, Y. I. Takeyama, Y. Idemoto, N. Koura, and H. Yanagishita (2001) Microbial conversion of n-alkanes into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma (Candida antarctica). Biotechnol. Lett. 23: 1709–1714.CrossRefGoogle Scholar
  19. 19.
    Atabani, A. E., A. S. Silitonga, H. C. Ong, T. M. I. Mahlia, H. H. Masjuki, I. A. Badruddin, and H. Fayaz (2013) Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew. Sust. Energ. Rev. 18: 211–245.CrossRefGoogle Scholar
  20. 20.
    Zhang, L., B. Jia, X. Tan, C. S. Thammina, H. Long, M. Liu, S. Wen, X. Song, and H. Cao (2014) Fatty acid profile and unigene-derived simple sequence repeat markers in tung tree (Vernicia fordii). PLoS One 9: e105298.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tang, L., J. N. Hu, X. M. Zhu, L. P. Luo, L. Lei, Z. Y. Deng, and K. T. Lee (2012) Enzymatic interesterification of palm stearin with Cinnamomum camphora seed oil to produce zero-trans medium-chain triacylglycerols-enriched plastic fat. J. Food. Sci. 77: C454–C460.CrossRefPubMedGoogle Scholar
  22. 22.
    Kang, W. R., M. J. Seo, K. C. Shin, J. B. Park, and D. K. Oh (2017) Gene cloning of an efficiency oleate hydratase from Stenotrophomonas nitritireducens for polyunsaturated fatty acids and its application in the conversion of plant oils to 10-hydroxy fatty acids. Biotechnol. Bioeng. 114: 74–82.CrossRefPubMedGoogle Scholar
  23. 23.
    Quan, L. H., Y. Jin, C. Wang, J. W. Min, Y. J. Kim, and D. C. Yang (2012) Enzymatic transformation of the major ginsenoside Rb2 to minor compound Y and compound K by a ginsenosidehydrolyzing β-glycosidase from Microbacterium esteraromaticum. J. Ind. Microbiol. Biot. 39: 1557–1562.CrossRefGoogle Scholar
  24. 24.
    Seo, M. H., K. R. Kim, and D. K. Oh (2013) Production of a novel compound, 10,12-dihydroxystearic acid from ricinoleic acid by an oleate hydratase from Lysinibacillus fusiformis. Appl. Microbiol. Biot. 97: 8987–8995.CrossRefGoogle Scholar
  25. 25.
    Smolinske, S. C. (1992) Handbook of food, drug, and cosmetic excipients. pp. 247–248. CRC, New York.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Ji-Hyeon Choi
    • 1
  • Min-Ju Seo
    • 1
  • Kyung-Tae Lee
    • 2
  • Deok-Kun Oh
    • 1
  1. 1.Department of Bioscience and BiotechnologyKonkuk UniversitySeoulKorea
  2. 2.National Forest Research InstituteKorea Forest ServiceJinjuKorea

Personalised recommendations