Advertisement

Biotechnology and Bioprocess Engineering

, Volume 22, Issue 6, pp 748–757 | Cite as

Novel rhodanine derivatives are selective algicides against Microcystis aeruginosa

  • Du Ri Jo
  • Young-Ok Kim
  • Ran Kim
  • Young-Cheol Chang
  • DuBok Choi
  • Hoon Cho
Research Paper

Abstract

In this study, a series of rhodanine derivatives containing various substituents was synthesized and tested for in vitro algicidal activity. Among the tested substituent groups, phenyl substituents with halogen groups showed good inhibitory potency. Furthermore, the compound with chlorine at the C2 position of the phenyl ring exhibited a higher algicidal effect than the compound with chlorine at the C3 position of the phenyl ring. Among the various rhodanine derivatives tested, 5-(2,4-dichlorobenzylidene)- rhodanine (compound 20) was the most potent inhibitor against M. aeruginosa with a lethal concentration 50 (LC50) value of 0.65 μM and Selenastrum capricornutum with an LC50 value of 0.82 μM. To verify the feasibility of their use in ecosystems, 25 h of acute ecotoxicity tests were carried out for three derivatives against Danio rerio and Daphnia magna. No mortality was observed in groups exposed to 2.0 μM of compound 20 after 100 h of exposure. Moreover, a survival rate of 100% was observed in D. magna exposed to 2 μM of compound 20 for 100 h. Overall, the results show that rhodanine derivatives are a possible method for controlling and inhibiting harmful algal blooms.

Keywords

algicidal activity ecotoxicity harmful algae blooms rhodanine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, D. M. (2009) Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coastal Manag. 52: 342–347.CrossRefGoogle Scholar
  2. 2.
    Kim, D., Y. Matsuyama, S. Nagasoe, M. Yamaguchi, Y. Ion, Y. Oshima, N. Imada, and T. Honjo (2004) Effects of temperature, salinity and irradiance on the growth of the harmful red tide dinoflagellate Cochlodinium polykrikoides. J. Plankton Res. 26: 1–6.CrossRefGoogle Scholar
  3. 3.
    Yanagi, T., T. Yamamoto, Y. Koizumi, T. Ikeda, M. Kamizono, and H. Tamori (1995) A numerical simulation of red tide formation. J. Mar. Syst. 6: 269–285.CrossRefGoogle Scholar
  4. 4.
    Kim, C. S., S. G. Lee, and H. G. Kim (2000) Biochemical responses of fish exposed to a harmful dinoflagellate Cochlodinium polykrikoides. J. Exp. Mar. Biol. Ecol. 254: 131–141.CrossRefGoogle Scholar
  5. 5.
    Boesch, D. F., D. M. Anderson, R. A. Horner, S. E. Shumway, P. A. Tester, and T. E. Whitledge (1997) NOAA Coastal Ocean Program Decision Analysis Series. p. 46. No. 10. NOAA Coastal Office, Sliver Spring, MD.Google Scholar
  6. 6.
    Shirota, A. (1989) Red tide problem and countermeasures. Int. J. Aquat. Fish Technol. 1: 195–223.Google Scholar
  7. 7.
    Choi, H. G., P. J. Kim, W. C. Lee, S. J. Yun, H. G. Kim, and H. J. Lee (1998) Removal efficiency of cochiodinium polykrikoides by Yellow Loess. J. Kor. Fish Soc. 31: 109–113.Google Scholar
  8. 8.
    Gumbo, R. J., G. Ross, and E. T. Cloete (2008) Biological control of microcystis dominated harmful algal blooms. Afr. J. Biotechnol. 7: 4765–4773.Google Scholar
  9. 9.
    Sengco, M. R. and D. M. Anderson (2004) Controlling harmful algal blooms through clay flocculation. J. Eukaryot. Microbiol. 51: 169–172.CrossRefGoogle Scholar
  10. 10.
    Yu, Z., M. R. Sengco, and D. M. Anderson (2004) Flocculation and removal of the brown tide organism, Aureococcus anophagefferens (Chrysophyceae), using clays. J. Appl. Phycol. 16: 101–110.CrossRefGoogle Scholar
  11. 11.
    Liu, J., H. Zhang, W. Yang, J. Gao, and Q. Ke (2004) Studies on biquaternary ammonium salt algaecide for removing red tide algae. Mar. Sci. Bull. 6: 60–65.CrossRefGoogle Scholar
  12. 12.
    Jancula, D., M. Drabkova, J. Cerny, M. Karaskova, R. Korýnkova, J. Rakusan, and B. Marsalek (2008) Algicidal activity of phthalocyanines. Environ. Toxicol. 23: 218–223.CrossRefGoogle Scholar
  13. 13.
    Daniel, J., S. Jana, G. Jakub, S. Marie, M. Blahoslva, and T. Eva (2007) Effects of aqueous extracts from five species of the family Papaveraceae on selected aquatic organisms. Envir. Toxi. 480–486.Google Scholar
  14. 14.
    Kim, Y. M., Y. Wu, T. U. Duong, G. S. Ghodake, S. W. Kim, E. S. Jin, and H. Cho (2010) Thiazolidinediones as a novel class of algicides against red tide harmful algal species. Appl. Biochem. Biotechnol. 162: 2273–2283.CrossRefGoogle Scholar
  15. 15.
    Kim, Y. M., Y. Wu, T. U. Duong, S. G. Jung, S. W.S, Kim, H. Cho, and E. S. Jin (2012) Algicidal activity of thiazolidinedione derivatives against harmful algal blooming species. Mar. Biotechnol. 14: 312–322.CrossRefGoogle Scholar
  16. 16.
    Wu, Y., Y. Lee, S. G. Jung, C. Y. Eom, S. W Kim, H. Cho, and E. S. Jin (2014) A novel thiazolinedione derivative TD118 showing selective algicidal effects for red tide control. World J. Microbiol. Biotechnol. 30: 1603–1614.CrossRefGoogle Scholar
  17. 17.
    You, D. S., Y. W, Lee, Choi, D. B., Y. C. Chang, and H. Cho (2017) Algicidal effects of thiazolinedione derivatives against Microcystis aeruginosa. Kor. J. Chem. Eng. 34: 139–149.CrossRefGoogle Scholar
  18. 18.
    Kwon, H. L., J. H, Kim, D. H. Na, D. H. Byeun, Y. Wu, S. W. Kim, E. S. Jin, and H. Cho (2013) Combination of 1,4-Naphthoquinonewith benzothiazoles had selective algicidal effects against harmful algae. Biotech. Bioproc. Eng. 18: 932–941.CrossRefGoogle Scholar
  19. 19.
    Ernst, R., N. I. Roland, and A. A. Gordon (1947) Rhodanine. Org. Synth. 27: 73–74.CrossRefGoogle Scholar
  20. 20.
    Nencki, M. (1877) Ueber die einwirkung der monochloressigsaure auf sulfocyansaure und ihre salze. J. Prakt. Chem. 16: 1–17.CrossRefGoogle Scholar
  21. 21.
    Shafii, N., M. Khoobi, M. Amini, A. Sakhteman, H. Nadri, A. Moradi, S. Emami, E. Saeedian Moghadam, A. Foroumadi, and A. Shafiee (2015) Synthesis and biological evaluation of 5-benzylidenerhodanine-3-acetic acid derivatives as AChE and 15-LOX inhibitors. J. Enz. Inhib. Med. Chem. 30: 389–395.CrossRefGoogle Scholar
  22. 22.
    Tomasic, T. and L. Peterlin Masic (2012) Rhodanine as a scaffold in drug discovery: A critical review of its biological activities and mechanisms of target modulation. Expert. Opin. Drug. Discov. 7: 549–560.CrossRefGoogle Scholar
  23. 23.
    Smith, T. K., B. L. Young, H. Denton, D. L. Hughes, and G. K. Wagner (2009) First small molecular inhibitors of T. brucei dolicholphosphate mannose synthase (DPMS), a validated drug target in African sleeping sickness. Bioorg. Med. Chem. Lett. 19: 1749–1752.CrossRefGoogle Scholar
  24. 24.
    Zingle, C., D. Tritsch, C. Grosdemange-Billiard, and M. Rohmer (2014) Catechol-rhodanine derivatives: Specific and promiscuous inhibitors of Escherichia coli deoxyxylulose phosphate reductoisomerase (DXR). Bioorg. Med. Chem. 22: 3713–3719.CrossRefGoogle Scholar
  25. 25.
    Brvar, M.., A. Perdih, V. Hodnik, M. Renko, G. Anderluh, R. Jerala, and T. Solmajer (2012) In silico discovery and biophysical evaluation of novel 5-(2-hydroxybenzylidene) rhodanine inhibitors of DNA gyrase B. Bioorg. Med. Chem. 20: 2572–2579.CrossRefGoogle Scholar
  26. 26.
    Tomasic, T., N. Zidar, and A. Kovac (2010) 5-Benzylidenethiazolidin-4-ones as multitarget inhibitors of bacterial Mur ligases. Chem. Med. Chem. 5: 286–291.CrossRefGoogle Scholar
  27. 27.
    Dolezel, J., P. Hirsova, and V. Opletalova (2009) Rhodanineacetic acid derivatives as potential drugs: Preparation, hydrophobic properties and antifungal activity of (5-arylalkylidene-4-oxo-2-thioxo-1,3-thiazolidin-3-yl) acetic acids. Molecules 14: 4197–4212.CrossRefGoogle Scholar
  28. 28.
    Alegaon, S. G., K. R. Alagawadi, P. V. Sonkusare, S. M. Chaudhary, D. H. Dadwe, and A. S. Shah (2012) Novel imidazo[2,1-b][1,3,4]thiadiazole carrying rhodanine-3-acetic acid as potential antitubercular agents. Bioorg. Med. Chem. Lett. 22: 1917–1921.CrossRefGoogle Scholar
  29. 29.
    Tomasic, T. and L. Peterlin Masic (2009) Rhodanine as a privileged scaffold in drug discovery. Curr. Med. Chem. 16: 1596–1629.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Du Ri Jo
    • 1
  • Young-Ok Kim
    • 2
  • Ran Kim
    • 3
  • Young-Cheol Chang
    • 4
  • DuBok Choi
    • 5
  • Hoon Cho
    • 1
  1. 1.Department of Polymer Science & EngineeringChosun UniversityGwangjuKorea
  2. 2.South Sea InstituteKorea Institute of Ocean Science and TechnologyGeojeKorea
  3. 3.Department of CosmetologyWonkwang Health Science UniversityJeonbukKorea
  4. 4.Department of Applied Sciences, College of Environmental TechnologyMuroran Institute of TechnologyHokkaidoJapan
  5. 5.Biotechnology LaboratoryB-K Company Ltd.JeonbukKorea

Personalised recommendations