Advertisement

Biotechnology and Bioprocess Engineering

, Volume 22, Issue 6, pp 717–724 | Cite as

Screening, expression, and characterization of Baeyer-Villiger monooxygenases for the production of 9-(nonanoyloxy)nonanoic acid from oleic acid

  • Pamidimarri D. V. N. Sudheer
  • Joohyun Yun
  • Sushma Chauhan
  • Taek Jin Kang
  • Kwon-Young Choi
Research Paper

Abstract

In this study, the production of 9-(nonanoyloxy) nonanoic acid from oleic acid was investigated. The whole cell biotransformation of oleic acid includes OhyA (hydratase), ADH (alcohol dehydrdogenase), and BVMO (Baeyer-Villiger Monooxygenase) enzymes consecutively. BVMOs are known to catalyze oxidative cleavage of long chain aliphatic ketones (e.g., 2-decanone, 10-ketooctadecanoic acid). However, the enzymes are difficult to overexpress in a soluble form in microorganisms. Thereby, this study has focused on screening and functional expression of the BVMOs in Escherichia coli. Initially BVMOs were selected by protein sequence analysis and were examined for their ability to express in soluble and active form to generate 9-(nonanoyloxy)nonanoic acid from oleic acid. Secondly various optimization strategies of inducer concentrations, co-expression with molecular chaperones, and different media conditions were investigated. Among the 9 BVMOs screened, three BVMOs were found to produce the target product and among these, Di_BVMO3 isolated from Dietzia sp. D5 was found to be best. Further, the soluble expression of Di_BVMO3 was enhanced by adding phosphoglycerate kinase as N-terminal fusion tag. The whole cell biotransformation with fusion enzyme resulted in 3 ~ 5-fold enhancement in product formation compared with the non-fusion counterpart. Final productivity up to 105.3 mg/L was achieved. Besides Di-BVMO3, other two new BVMOs of Rh_BVMO4 from Rhodococcus sp. RHA1 and AFL838 from Aspergillus flavus NRRL3357 were screened for production of 9-(nonanoyloxy)nonanoic acid and could be used for whole cell biotransformation reaction of other long chain ketones.

Keywords

Baeyer-Villiger monooxygenases soluble expression whole-cell bio transformation and 9-(nonanoyloxy) nonanoic acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12257_2017_295_MOESM1_ESM.pdf (265 kb)
Screening, Expression, and Characterization of Baeyer-Villiger Monooxygenases for the Production of 9-(nonanoyloxy)nonanoic Acid from Oleic Acid

References

  1. 1.
    Renz, M. and B. Meunier (1999) 100 years of Baeyer–Villiger oxidations. Europ. J. Organic Chem. 1999: 737–750.CrossRefGoogle Scholar
  2. 2.
    ten Brink, G. J., I. W. C. E. Arends, and R. A. Sheldon (2004) The Baeyer−Villiger reaction: New developments toward greener procedures. Chem. Rev. 104: 4105–4124.CrossRefGoogle Scholar
  3. 3.
    Torres Pazmiño, D. E., H. M. Dudek, and M. W. Fraaije (2010) Baeyer–Villiger monooxygenases: Recent advances and future challenges. Curr. Opin. Chem. Biol. 14: 138–144.CrossRefGoogle Scholar
  4. 4.
    Kamerbeek, N. M., D. B. Janssen, W. J. H. van Berkel, and M. W. Fraaije (2003) Baeyer–Villiger monooxygenases, an emerging family of flavin-dependent biocatalysts. Adv. Synth. Catal. 345: 667–678.CrossRefGoogle Scholar
  5. 5.
    Oh, H. -J., S. -U. Kim, J. -W. Song, J. -H. Lee, W. -R. Kang, Y. -S. Jo, K. -R. Kim, U. T. Bornscheuer, D. -K. Oh, and J. -B. Park (2015) Biotransformation of linoleic acid into hydroxy fatty acids and carboxylic acids using a linoleate double bond hydratase as key enzyme. Adv. Synth. Catal. 357: 408–416.CrossRefGoogle Scholar
  6. 6.
    Schörken, U. and P. Kempers (2009) Lipid biotechnology: Industrially relevant production processes. Europ. J. Lipid Sci. Technol. 111: 627–645.CrossRefGoogle Scholar
  7. 7.
    Seo, J. -H., H. -H. Kim, E. -Y. Jeon, Y. -H. Song, C. -S. Shin, and J. -B. Park (2016) Engineering of Baeyer-Villiger monooxygenasebased Escherichia coli biocatalyst for large scale biotransformation of ricinoleic acid into (Z)-11-(heptanoyloxy)undec-9-enoic acid. Scientific Rep. 6: 28223.CrossRefGoogle Scholar
  8. 8.
    Seo, J. H., S. M. Lee, J. Lee, and J. B. Park (2015) Adding value to plant oils and fatty acids: Biological transformation of fatty acids into omega-hydroxycarboxylic, alpha,omega-dicarboxylic, and omega-aminocarboxylic acids. J. Biotechnol. 216: 158–166.CrossRefGoogle Scholar
  9. 9.
    Song, J. W., J. Lee, U. T. Bornscheuer, and J. B. Park (2014) Microbial synthesis of medium-chain α,ω-dicarboxylic acids and ω-aminocarboxylic acids from renewable long-chain fatty acids. Adv. Synth. Catal. 356: 1782–1788.CrossRefGoogle Scholar
  10. 10.
    Koppireddi, S., J. -H. Seo, E. -Y. Jeon, P. S. Chowdhury, H. -Y. Jang, J. -B. Park, and Y. -U. Kwon (2016) Combined biocatalytic and chemical transformations of oleic acid to ω-hydroxynonanoic acid and α,ω-nonanedioic acid. Adv. Synth. Catal. 358: 3084–3092.CrossRefGoogle Scholar
  11. 11.
    Jang, H. -Y., K. Singha, H. -H. Kim, Y. -U. Kwon, and J. -B. Park (2016) Chemo-enzymatic synthesis of 11-hydroxyundecanoic acid and 1,11-undecanedioic acid from ricinoleic acid. Green Chem. 18: 1089–1095.CrossRefGoogle Scholar
  12. 12.
    Jeon, E. -Y., J. -H. Seo, W. -R. Kang, M. -J. Kim, J. -H. Lee, D. -K. Oh, and J. -B. Park (2016) Simultaneous enzyme/wholecell biotransformation of plant oils into C9 carboxylic acids. ACS Catal. 6: 7547–7553.CrossRefGoogle Scholar
  13. 13.
    Song, J. -W., E. -Y. Jeon, D. -H. Song, H. -Y. Jang, U. T. Bornscheuer, D. -K. Oh, and J. -B. Park (2013) Multistep enzymatic synthesis of long-chain α,ω-dicarboxylic and ω-hydroxycarboxylic acids from renewable fatty acids and plant oils. Angewandte Chem. Internat. Ed. 52: 2534–2537.CrossRefGoogle Scholar
  14. 14.
    Rehdorf, J., A. Kirschner, and U. T. Bornscheuer (2007) Cloning, expression and characterization of a Baeyer-Villiger monooxygenase from Pseudomonas putida KT2440. Biotechnol. Lett. 29: 1393–1398.CrossRefGoogle Scholar
  15. 15.
    Kirschner, A., J. Altenbuchner, and U. T. Bornscheuer (2007) Cloning, expression, and characterization of a Baeyer–Villiger monooxygenase from Pseudomonas fluorescens DSM 50106 in E. coli. Appl. Microbiol. Biotechnol. 73: 1065–1072.CrossRefGoogle Scholar
  16. 16.
    Baek, A. H., E. -Y. Jeon, S. -M. Lee, and J. -B. Park (2015) Expression levels of chaperones influence biotransformation activity of recombinant Escherichia coli expressing Micrococcus luteus alcohol dehydrogenase and Pseudomonas putida Baeyer–Villiger monooxygenase. Biotechnol. Bioeng. 112: 889–895.CrossRefGoogle Scholar
  17. 17.
    Song, J. W., J. M. Woo, G. Y. Jung, U. T. Bornscheuer, and J. B. Park (2016) 3'-UTR engineering to improve soluble expression and fine-tuning of activity of cascade enzymes in Escherichia coli. Sci. Rep. 6: 29406.CrossRefGoogle Scholar
  18. 18.
    Ferroni, F. M., M. S. Smit, and D. J. Opperman (2014) Functional divergence between closely related Baeyer-Villiger monooxygenases from Aspergillus flavus. J. Mol. Catal. B: Enz. 107: 47–54.CrossRefGoogle Scholar
  19. 19.
    Riebel, A., H. M. Dudek, G. de Gonzalo, P. Stepniak, L. Rychlewski, and M. W. Fraaije (2012) Expanding the set of rhodococcal Baeyer–Villiger monooxygenases by high-throughput cloning, expression and substrate screening. Appl. Microbiol. Biotechnol. 95: 1479–1489.CrossRefGoogle Scholar
  20. 20.
    Philo, J. S. and T. Arakawa (2009) Mechanisms of protein aggregation. Curr. Pharma. Biotechnol. 10: 348–351.CrossRefGoogle Scholar
  21. 21.
    Morris, A. M., M. A. Watzky, and R. G. Finke (2009) Protein aggregation kinetics, mechanism, and curve-fitting: A review of the literature. Biochim. Biophys. Acta (BBA) - Proteins and Proteomics. 1794: 375–397.CrossRefGoogle Scholar
  22. 22.
    Lebendiker, M. and T. Danieli (2014) Production of prone-toaggregate proteins. FEBS Lett. 588: 236–246.CrossRefGoogle Scholar
  23. 23.
    Martínez-Alonso, M., E. García-Fruitós, N. Ferrer-Miralles, U. Rinas, and A. Villaverde (2010) Side effects of chaperone gene co-expression in recombinant protein production. Microbial. Cell Factories 9: 64.CrossRefGoogle Scholar
  24. 24.
    Rehdorf, J., C. L. Zimmer, and U. T. Bornscheuer (2009) Cloning, expression, characterization, and biocatalytic investigation of the 4-hydroxyacetophenone monooxygenase from Pseudomonas putida JD1. Appl. Environ. Microbiol. 75: 3106–3114.CrossRefGoogle Scholar
  25. 25.
    Riebel, A., G. de Gonzalo, and M. W. Fraaije (2013) Expanding the biocatalytic toolbox of flavoprotein monooxygenases from Rhodococcus jostii RHA1. J. Mol. Catal. B: Enz. 88: 20–25.CrossRefGoogle Scholar
  26. 26.
    Song, J. -A., D. -S. Lee, J. -S. Park, K. -Y. Han, and J. Lee (2012) The N-domain of Escherichia coli phosphoglycerate kinase is a novel fusion partner to express aggregation-prone heterologous proteins. Biotechnol. Bioeng. 109: 325–335.CrossRefGoogle Scholar
  27. 27.
    Iwaki, H., Y. Hasegawa, S. Wang, M. M. Kayser, and P. C. K. Lau (2002) Cloning and characterization of a gene cluster involved in cyclopentanol metabolism in comamonas sp. strain NCIMB 9872 and biotransformations effected by Escherichia coli-expressed cyclopentanone 1,2-Monooxygenase. Appl. Environ. Microbiol. 68: 5671–5684.CrossRefGoogle Scholar
  28. 28.
    de Gonzalo, G., D. E. Torres Pazmiño, G. Ottolina, M. W. Fraaije, and G. Carrea (2006) 4-Hydroxyacetophenone monooxygenase from Pseudomonas fluorescens ACB as an oxidative biocatalyst in the synthesis of optically active sulfoxides. Tetrahedron: Asymm. 17: 130–135.CrossRefGoogle Scholar
  29. 29.
    Bisagni, S., J. Smuś, G. Chávez, R. Hatti-Kaul, and G. Mamo (2014) Cloning and expression of a Baeyer–Villiger monooxygenase oxidizing linear aliphatic ketones from Dietzia sp. D5. J. Mol. Catal. B: Enzy. 109: 161–169.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Pamidimarri D. V. N. Sudheer
    • 1
  • Joohyun Yun
    • 1
  • Sushma Chauhan
    • 2
  • Taek Jin Kang
    • 2
  • Kwon-Young Choi
    • 1
  1. 1.Department of Environmental Engineering, College of EngineeringAjou UniversitySuwonKorea
  2. 2.Department of Chemical and Biochemical EngineeringDongguk UniversitySeoulKorea

Personalised recommendations