Advertisement

Biotechnology and Bioprocess Engineering

, Volume 22, Issue 6, pp 671–678 | Cite as

Anti-apoptotic effects of the alpha-helix domain of silkworm storage protein 1

  • Ji Eun Baik
  • Won Jong Rhee
Research Paper
  • 40 Downloads

Abstract

Apoptosis is a programmed cell death and a mechanism for the maintenance of multicellular organism homeostasis. In bioindustry, apoptosis during cell culture used to produce therapeutic proteins results in the reduction of productivity and quality. Thus, it is crucial to develop novel techniques and materials to inhibit apoptosis. Previous studies have found that storage protein 1 (SP1) has antiapoptotic effects on HeLa cells, but the part of SP1 responsible for the anti-apoptotic effects is unknown. Herein, the anti-apoptotic effects of the N-terminal, α-helix domain of SP1 (SPD1) were investigated by generating a cell line stably expressing SPD1. SPD1 expression conferred strong resistance to apoptosis induced by staurosporine (STS). SPD1 diminished the loss of the mitochondrial membrane potential and inhibited caspase-3 activation, suggesting that it acts as an upstream apoptosis inhibitor. SPD1 was also produced as a recombinant protein in E. coli and culture medium supplementation with recombinant SPD1 resulted in apoptosis inhibition in HeLa cells. The capability of SPD1 to penetrate cell membrane was also assessed, and the results show that it localized in the cytosol, as well as on the plasma membrane. This indicates that SPD1 is a cell-penetrating protein with high antiapoptotic activity. In conclusion, SPD1 is a novel protein responsible for the anti-apoptotic effect of SP1, and it can be considered as a new biomaterial that can minimize cell death and maximize productivity in biopharmaceutical industry. In addition, the miniaturization of SP1 in SPD1 can facilitate its practical usage as a culture medium supplement and cosmetic ingredient.

Keywords

apoptosis anti-apoptotic activity SP1 α-helix domain biopharmaceutical industry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hengartner, M. O. (2000) The biochemistry of apoptosis. Nature 407: 770–776.CrossRefGoogle Scholar
  2. 2.
    Wyllie, A. H., J. F. Kerr, and A. R. Currie (1980) Cell death: The significance of apoptosis. Int. Rev. Cytol. 68: 251–306.CrossRefGoogle Scholar
  3. 3.
    Vaux, D. L. and A. Strasser (1996) The molecular biology of apoptosis. Proc. Natl. Acad. Sci. U S A. 93: 2239–2244.CrossRefGoogle Scholar
  4. 4.
    Elmore, S. (2007) Apoptosis: A review of programmed cell death. Toxicol. Pathol. 35: 495–516.CrossRefGoogle Scholar
  5. 5.
    Strasser, A., L. O’Connor, and V. M. Dixit (2000) Apoptosis signaling. Annu. Rev. Biochem. 69: 217–245.CrossRefGoogle Scholar
  6. 6.
    Carson, D. A. and J. M. Ribeiro (1993) Apoptosis and disease. Lancet. 341: 1251–1254.CrossRefGoogle Scholar
  7. 7.
    Lee, Y. and A. B. Gustafsson (2009) Role of apoptosis in cardiovascular disease. Apopt. 14: 536–548.CrossRefGoogle Scholar
  8. 8.
    Lowe, S. W. and A. W. Lin (2000) Apoptosis in cancer. Carcinogen. 21: 485–495.CrossRefGoogle Scholar
  9. 9.
    Wong, D. C., K. T. Wong, Y. Y. Lee, P. N. Morin, C. K. Heng, and M. G. Yap (2006) Transcriptional profiling of apoptotic pathways in batch and fed-batch CHO cell cultures. Biotechnol. Bioeng. 94: 373–382.CrossRefGoogle Scholar
  10. 10.
    Singh, R. P., M. Al-Rubeai, C. D. Gregory, and A. N. Emery (1994) Cell death in bioreactors: a role for apoptosis. Biotechnol. Bioeng. 44: 720–726.CrossRefGoogle Scholar
  11. 11.
    al-Rubeai, M. and R. P. Singh (1998) Apoptosis in cell culture. Curr. Opin. Biotechnol. 9: 152–156.CrossRefGoogle Scholar
  12. 12.
    Arden, N. and M. J. Betenbaugh (2004) Life and death in mammalian cell culture: Strategies for apoptosis inhibition. Trends Biotechnol. 22: 174–180.CrossRefGoogle Scholar
  13. 13.
    Laken, H. A. and M. W. Leonard (2001) Understanding and modulating apoptosis in industrial cell culture. Curr. Opin. Biotechnol. 12: 175–179.CrossRefGoogle Scholar
  14. 14.
    de Zengotita, V. M., L. R. Abston, A. E. Schmelzer, S. Shaw, and W. M. Miller (2002) Selected amino acids protect hybridoma and CHO cells from elevated carbon dioxide and osmolality. Biotechnol. Bioeng. 78: 741–752.CrossRefGoogle Scholar
  15. 15.
    Oh, H. K., M. K. So, J. Yang, H. C. Yoon, J. S. Ahn, J. M. Lee, J. T. Kim, J. U. Yoo, and T. H. Byun (2005) Effect of N-Acetylcystein on butyrate-treated Chinese hamster ovary cells to improve the production of recombinant human interferonbeta- 1a. Biotechnol. Prog. 21: 1154–1164.CrossRefGoogle Scholar
  16. 16.
    Won Jong Rhee, E. H. L. and T. H. Park (2009) Expression of Bombyx mori 30Kc19 protein in Escherichia coli and its antiapoptotic effect in Sf9 cell. Biotechnol. Bioproc. Eng. 14: 645.CrossRefGoogle Scholar
  17. 17.
    Yu, W., H. Ying, F. Tong, C. Zhang, Y. Quan, and Y. Zhang (2013) Protective effect of the silkworm protein 30Kc6 on human vascular endothelial cells damaged by oxidized low density lipoprotein (Ox-LDL). PLoS One 8: e68746.CrossRefGoogle Scholar
  18. 18.
    Kim, E. J., W. J. Rhee, and T. H. Park (2001) Isolation and characterization of an apoptosis-inhibiting component from the hemolymph of Bombyx mori. Biochem. Biophys. Res. Commun. 285: 224–228.CrossRefGoogle Scholar
  19. 19.
    Eun Jeong Kim, T. H. P. (2003) Anti-apoptosis engineering. Biotechnol. Bioproc. Eng. 8: 76.CrossRefGoogle Scholar
  20. 20.
    Kim, E. J., H. J. Park, and T. H. Park (2003) Inhibition of apoptosis by recombinant 30K protein originating from silkworm hemolymph. Biochem. Biophys. Res. Commun. 308: 523–528.CrossRefGoogle Scholar
  21. 21.
    Choi, S. S., W. J. Rhee, and T. H. Park (2005) Beneficial effect of silkworm hemolymph on a CHO cell system: Inhibition of apoptosis and increase of EPO production. Biotechnol. Bioeng. 91: 793–800.CrossRefGoogle Scholar
  22. 22.
    Ji Hye Lee, T. H. P. and W. J. Rhee (2015) Inhibition of apoptosis in HeLa cell by silkworm storage 1, SP1. Biotechnol. Bioproc. Eng. 20: 807–813.CrossRefGoogle Scholar
  23. 23.
    Jones, G., N. Brown, M. Manczak, S. Hiremath, and F. C. Kafatos (1990) Molecular cloning, regulation, and complete sequence of a hemocyanin-related, juvenile hormone-suppressible protein from insect hemolymph. J. Biol. Chem. 265: 8596–8602.Google Scholar
  24. 24.
    Willott, E., X. Y. Wang, and M. A. Wells (1989) cDNA and gene sequence of Manduca sexta arylphorin, an aromatic amino acidrich larval serum protein. Homology to arthropod hemocyanins. J. Biol. Chem. 264: 19052–19059.Google Scholar
  25. 25.
    Hazes, B., K. A. Magnus, C. Bonaventura, J. Bonaventura, Z. Dauter, K. H. Kalk, and W. G. Hol (1993) Crystal structure of deoxygenated Limulus polyphemus subunit II hemocyanin at 2.18 A resolution: Clues for a mechanism for allosteric regulation. Protein Sci. 2: 597–619.CrossRefGoogle Scholar
  26. 26.
    Marchler-Bauer, A., S. Lu, J. B. Anderson, F. Chitsaz, M. K. Derbyshire, C. DeWeese-Scott, J. H. Fong, L. Y. Geer, R. C. Geer, N. R. Gonzales, M. Gwadz, D. I. Hurwitz, J. D. Jackson, Z. Ke, C. J. Lanczycki, F. Lu, G. H. Marchler, M. Mullokandov, M. V. Omelchenko, C. L. Robertson, J. S. Song, N. Thanki, R. A. Yamashita, D. Zhang, N. Zhang, C. Zheng, and S. H. Bryant (2011) CDD: A conserved domain database for the functional annotation of proteins. Nucleic Acids Res. 39: D225–229.CrossRefGoogle Scholar
  27. 27.
    Bertrand, R., E. Solary, P. O’Connor, K. W. Kohn, and Y. Pommier (1994) Induction of a common pathway of apoptosis by staurosporine. Exp. Cell Res. 211: 314–321.CrossRefGoogle Scholar
  28. 28.
    Ryu, J., H. Kim, H. H. Park, H. J. Lee, J. H. Park, W. J. Rhee, and T. H. Park (2016) Protein-stabilizing and cell-penetrating properties of alpha-helix domain of 30Kc19 protein. Biotechnol. J. 11: 1443–1451.CrossRefGoogle Scholar
  29. 29.
    Wang, Z., J. H. Park, H. H. Park, W. Tan, and T. H. Park (2011) Enhancement of recombinant human EPO production and sialylation in chinese hamster ovary cells through Bombyx mori 30Kc19 gene expression. Biotechnol. Bioeng. 108: 1634–1642.CrossRefGoogle Scholar
  30. 30.
    Park, J. H., H. H. P., S. S. Choi, and T. H. Park (2012) Stabilization of enzymes by the recombinant 30Kc19 protein. Proc. Biochem. 47: 164–169.CrossRefGoogle Scholar
  31. 31.
    Lai, T., Y. Yang, and S. K. Ng (2013) Advances in mammalian cell line development technologies for recombinant protein production. Pharmaceuticals 6: 579–603.CrossRefGoogle Scholar
  32. 32.
    Warnock, J. N. and M. Al-Rubeai (2006) Bioreactor systems for the production of biopharmaceuticals from animal cells. Biotechnol. Appl. Biochem. 45: 1–12.CrossRefGoogle Scholar
  33. 33.
    Tan, J. G. L., Y. Y. Lee, T. Wang, M. G. S. Yap, T. W. Tan, and S. K. Ng (2015) Heat shock protein 27 overexpression in CHO cells modulates apoptosis pathways and delays activation of caspases to improve recombinant monoclonal antibody titre in fed-batch bioreactors. Biotechnol. J. 10: 790–800.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Division of BioengineeringIncheon National UniversityIncheonKorea

Personalised recommendations