Biotechnology and Bioprocess Engineering

, Volume 22, Issue 6, pp 686–692 | Cite as

Recombinant DNA cloning of the active region of the receptor activator of NF-κB ligand (RANKL) gene and its role in osteoclastogenesis

  • Gwangchul Lee
  • Youngjong Ko
  • Mineon Park
  • Bora Kim
  • Hoon Hyun
  • Wonbong Lim
Research Paper


Osteopetrosis belongs to a group of rare genetic diseases typically treated with bone marrow transplantation. This approach is not effective in a recently identified form of the disease caused by mutations in the receptor activator of NF-κB ligand (RANKL) gene. In these patients, replacement therapy and RANKL delivery may be a more valid approach than transplantation. Here, we describe the construction of a recombinant gene encoding regions of RANKL (rRANKL), including the biologically active regional loop sequence. We present detailed methods for the cloning, expression, and purification of the recombinant protein. The activity of rRANKL including the active region was assessed in vitro and mature osteoclast generation was evaluated in vivo using a mouse model. We provide a proof of concept for the therapeutic potential of full-length and selected active regions of rRANKL in the treatment of osteopetrosis, warranting clinical assessment.


RANKL osteoclastogenesis macrophage cloning osteopetrosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Villa, A., M. M. Guerrini, B. Cassani, A. Pangrazio, and C. Sobacchi (2009) Infantile malignant, autosomal recessive osteopetrosis: The rich and the poor. Calcif Tissue Int. 84: 1–12.CrossRefPubMedGoogle Scholar
  2. 2.
    Lo Iacono, N., H. C. Blair, P. L. Poliani, V. Marrella, F. Ficara, B. Cassani, F. Facchetti, E. Fontana, M. M. Guerrini, E. Traggiai, F. Schena, M. Paulis, S. Mantero, A. Inforzato, S. Valaperta, A. Pangrazio, L. Crisafulli, V. Maina, P. Kostenuik, P. Vezzoni, A. Villa, and C. Sobacchi (2012) Osteopetrosis rescue upon RANKL administration to Rankl(-/-) mice: A new therapy for human RANKL-dependent ARO. J. Bone Miner. Res. 27: 2501–2510.CrossRefPubMedGoogle Scholar
  3. 3.
    Guerrini, M. M., C. Sobacchi, B. Cassani, M. Abinun, S. S. Kilic, A. Pangrazio, D. Moratto, E. Mazzolari, J. Clayton-Smith, P. Orchard, F. P. Coxon, M. H. Helfrich, J. C. Crockett, D. Mellis, A. Vellodi, I. Tezcan, L. D. Notarangelo, M. J. Rogers, P. Vezzoni, A. Villa, and A. Frattini (2008) Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am. J. Hum. Genet. 83: 64–76.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Nakashima, T., M. Hayashi, T. Fukunaga, K. Kurata, M. Oh-Hora, J. Q. Feng, L. F. Bonewald, T. Kodama, A. Wutz, E. F. Wagner, J. M. Penninger, and H. Takayanagi (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 17: 1231–1234.CrossRefPubMedGoogle Scholar
  5. 5.
    Xiong, J., M. Onal, R. L. Jilka, R. S. Weinstein, S. C. Manolagas, and C. A. O’Brien (2011) Matrix-embedded cells control osteoclast formation. Nat. Med. 17: 1235–1241.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Blair, H. C., L. J. Robinson, and M. Zaidi (2005) Osteoclast signalling pathways. Biochem. Biophys. Res. Commun. 328: 728–738.CrossRefPubMedGoogle Scholar
  7. 7.
    Asagiri, M. and H. Takayanagi (2007) The molecular understanding of osteoclast differentiation. Bone. 40: 251–264.CrossRefPubMedGoogle Scholar
  8. 8.
    Warren, J. T., W. Zou, C. E. Decker, N. Rohatgi, C. A. Nelson, D. H. Fremont, and S. L. Teitelbaum (2015) Correlating RANK ligand/RANK binding kinetics with osteoclast formation and function. J. Cell Biochem. 116: 2476–2483.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lacey, D. L., E. Timms, H. L. Tan, M. J. Kelley, C. R. Dunstan, T. Burgess, R. Elliott, A. Colombero, G. Elliott, S. Scully, H. Hsu, J. Sullivan, N. Hawkins, E. Davy, C. Capparelli, A. Eli, Y. X. Qian, S. Kaufman, I. Sarosi, V. Shalhoub, G. Senaldi, J. Guo, J. Delaney, and W. J. Boyle (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 93: 165–176.CrossRefPubMedGoogle Scholar
  10. 10.
    Lam, J., C. A. Nelson, F. P. Ross, S. L. Teitelbaum, and D. H. Fremont (2001) Crystal structure of the TRANCE/RANKL cytokine reveals determinants of receptor-ligand specificity. J. Clin. Invest. 108: 971–979.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Burgess, T. L., Y. Qian, S. Kaufman, B. D. Ring, G. Van, C. Capparelli, M. Kelley, H. Hsu, W. J. Boyle, C. R. Dunstan, S. Hu, and D. L. Lacey (1999) The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J. Cell Biol. 145: 527–538.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lacey, D. L., H. L. Tan, J. Lu, S. Kaufman, G. Van, W. Qiu, A. Rattan, S. Scully, F. Fletcher, T. Juan, M. Kelley, T. L. Burgess, W. J. Boyle, and A. J. Polverino (2000) Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo. Am. J. Pathol. 157: 435–448.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hanada, R., T. Hanada, and J. M. Penninger (2010) Physiology and pathophysiology of the RANKL/RANK system. Biol. Chem. 391: 1365–1370.CrossRefPubMedGoogle Scholar
  14. 14.
    Chaplin, D. D. (2010) Overview of the immune response. J. Alle. Clin. Immunol. 125: S3–23.CrossRefGoogle Scholar
  15. 15.
    Bessette, P. H., F. Aslund, J. Beckwith, and G. Georgiou (1999) Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc. Natl. Acad. Sci. USA. 96: 13703–13708.CrossRefPubMedGoogle Scholar
  16. 16.
    Sohn, H., Y. Ko, M. Park, B. Kim, O. Kim, D. Kim, Y. L. Moon, and W. Lim (2016) Cloning and expression of recombinant macrophage-colony stimulating factor-A progressive strategy for economical production. Biotechnol. Bioproc. Eng. 21: 446–452.CrossRefGoogle Scholar
  17. 17.
    Sohn, H., Y. Ko, M. Park, D. Kim, Y. L. Moon, Y. J. Jeong, H. Lee, Y. Moon, B. C. Jeong, O. Kim, and W. Lim (2015) Effects of light-emitting diode irradiation on RANKL-induced osteoclastogenesis. Lasers Surg. Med. 47: 745–755.CrossRefPubMedGoogle Scholar
  18. 18.
    Bargman, R., A. Huang, A. L. Boskey, C. Raggio, and N. Pleshko (2010) RANKL inhibition improves bone properties in a mouse model of osteogenesis imperfecta. Connect Tissue Res. 51: 123–131.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ta, H. M., G. T. Nguyen, H. M. Jin, J. Choi, H. Park, N. Kim, H. Y. Hwang, and K. K. Kim (2010) Structure-based development of a receptor activator of nuclear factor-kappaB ligand (RANKL) inhibitor peptide and molecular basis for osteopetrosis. Proc. Natl. Acad. Sci. USA. 107: 20281–20286.CrossRefPubMedGoogle Scholar
  20. 20.
    Xiu, Y., H. Xu, C. Zhao, J. Li, Y. Morita, Z. Yao, L. Xing, and B. F. Boyce (2014) Chloroquine reduces osteoclastogenesis in murine osteoporosis by preventing TRAF3 degradation. J. Clin. Invest. 124: 297–310.CrossRefPubMedGoogle Scholar
  21. 21.
    Chen, H., X. Zhou, H. Fujita, M. Onozuka, and K. Y. Kubo (2013) Age-related changes in trabecular and cortical bone microstructure. Int. J. Endocrinol. 2013: 213234.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Ihn, H. J., J. A. Kim, Y. C. Bae, H. I. Shin, M. C. Baek, and E. K. Park (2017) Afatinib ameliorates osteoclast differentiation and function through downregulation of RANK signaling pathways. BMB Rep. 50: 150–155.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Roux, S. and P. Orcel (2000) Bone loss. Factors that regulate osteoclast differentiation: An update. Arthritis Res. 2: 451–456.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Gwangchul Lee
    • 1
    • 2
  • Youngjong Ko
    • 1
  • Mineon Park
    • 1
    • 3
  • Bora Kim
    • 1
    • 3
  • Hoon Hyun
    • 4
  • Wonbong Lim
    • 1
    • 2
    • 5
  1. 1.Laboratory of Orthopaedic ResearchChosun University HospitalGwangjuKorea
  2. 2.Department of Orthopaedic SurgeryChosun University HospitalGwangjuKorea
  3. 3.Interdisciplinary Program of Biomedical EngineeringChonnam National UniversityGwangjuKorea
  4. 4.Department of Biomedical SciencesChonnam National University Medical SchoolGwangjuKorea
  5. 5.Department of Premedical Science, College of MedicineChosun UniversityGwangjuKorea

Personalised recommendations