Skip to main content
Log in

Engineering a highly thermostable and stress tolerant superoxide dismutase by N-terminal modification and metal incorporation

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Thermophilic or hyperthermophilic SODs (superoxide dismutase) usually offer substantial biotechnological advantages over mesophilic SODs. Previously a 244-amino acid N-terminal domain (NTD) from a heatresistant SOD of Geobacillus thermodenitrificans NG80-2 was discovered and demonstrated to be able to confer thermostability to homologous mesophilic SODs, which revealed a new type of heat resistance mechanism. To further improve the heat resistance and stress tolerance of thermophilic cambialistic superoxide dismutase (Fe/Mn- SOD Ap ) from Aeropyrum pernix K1 through metal incorporation and fusion with the newly found peptide NTD for broadening its industrial application, the wildtype SOD Ap and NTD-fused ntdSOD Ap were expressed in E. coli BL21 and incorporated with metal cofactors by two ways. Recombinant fusion SOD obtained by in vitro reconstitution (Mn-rec ntdSOD Ap ) exhibited improved optimum temperature at 70°C and dramatically enhanced thermostability especially at 110°C with enhanced pH stability from 4 to 10 and higher tolerance for denaturants and organic media than Mn-rec SOD Ap . To the best of our knowledge, Mn-rec ntdSOD Ap could be the most heat resistant SOD. In addition, metal incorporation of SOD Ap and ntdSOD Ap via in vivo modification have been developed and proved to be more practical for industrial use. These results indicate that fusion with NTD along with metal incorporation can generate superimposed effect and be applied to enhance the stability of cambialistic thermophilic SODs, thus providing a universal and convenient bioengineering method for generating extremely stable SODs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fridovich, I. (1978) Superoxide dismutases: Defence against endogenous superoxide radical. Ciba Found. Symp. 77–93.

    Google Scholar 

  2. Bafana, A., S. Dutt, S. Kumar, and P. S. Ahuja (2011) Superoxide dismutase: An industrial perspective. Crit.l Rev. Biotechnol. 31: 65–76.

    Article  CAS  Google Scholar 

  3. Vieille, C. and G. J. Zeikus (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65: 1–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kumar, A., S. Dutt, G. Bagler, P. S. Ahuja, and S. Kumar (2012) Engineering a thermo-stable superoxide dismutase functional at sub-zero to >50 degrees C, which also tolerates autoclaving. Sci. Rep. 2: 387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Song, C., L. Sheng, and X. Zhang (2012) Preparation and characterization of a thermostable enzyme (Mn-SOD) immobilized on supermagnetic nanoparticles. Appl. Microbiol. Biotechnol. 96: 123–132.

    Article  CAS  PubMed  Google Scholar 

  6. Pinto, V. H., D. Carvalhoda-Silva, J. L. Santos, T. Weitner, M. G. Fonseca, M. I. Yoshida, Y. M. Idemori, I. Batinic-Haberle, and J. S. Reboucas (2013) Thermal stability of the prototypical Mn porphyrin-based superoxide dismutase mimic and potent oxidative-stress redox modulator Mn(III) meso-tetrakis(Nethylpyridinium-2-yl)porphyrin chloride, MnTE-2-PyP(5+). J. Pharm. Biomed. Anal. 73: 29–34.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, H. W., F. S. Wang, W. Shao, X. L. Zheng, J. Z. Qi, J. C. Cao, and T. M. Zhang (2006) Characterization and stability investigation of Cu,Zn-superoxide dismutase covalently modified by low molecular weight heparin. Biochem. 71: S96–100, 105.

    CAS  Google Scholar 

  8. Hartman, J. R., T. Geller, Z. Yavin, D. Bartfeld, D. Kanner, H. Aviv, and M. Gorecki (1986) High-level expression of enzymatically active human Cu/Zn superoxide dismutase in Escherichia coli. Proc. Natl. Acad. Sci. USA. 83: 7142–7146.

    Article  CAS  PubMed  Google Scholar 

  9. Wang, W., T. Ma, B. Zhang, N. Yao, M. Li, L. Cui, G. Li, Z. Ma, and J. Cheng (2014) A novel mechanism of protein thermostability: A unique N-terminal domain confers heat resistance to Fe/Mn-SODs. Sci. Rep. 4: 7284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, M., L. Zhu, and W. Wang (2016) Improving the thermostability and stress tolerance of an archaeon hyperthermophilic superoxide dismutase by fusion with a unique N-terminal domain. Springerplus 5: 241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yamano, S., Y. Sako, N. Nomura, and T. Maruyama (1999) A cambialistic SOD in a strictly aerobic hyperthermophilic archaeon, Aeropyrum pernix. J. Biochem. 126: 218–225.

    Article  CAS  PubMed  Google Scholar 

  12. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  13. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  PubMed  Google Scholar 

  14. Kirby, T., J. Blum, I. Kahane, and I. Fridovich (1980) Distinguishing between Mn-containing and Fe-containing superoxide dismutases in crude extracts of cells. Arch. Biochem. Biophys. 201: 551–555.

    Article  CAS  PubMed  Google Scholar 

  15. Nam, J. S., J. H. Yoon, H. I. Lee, S. W. Kim, and Y. T. Ro (2011) Molecular cloning, purification, and characterization of a superoxide dismutase from a fast-growing Mycobacterium sp. Strain JC1 DSM 3803. J. Microbiol. 49: 399–406.

    CAS  PubMed  Google Scholar 

  16. Beauchamp, C. and I. Fridovich (1971) Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44: 276–287.

    Article  CAS  PubMed  Google Scholar 

  17. Nakamura, T., K. Torikai, K. Uegaki, J. Morita, K. Machida, A. Suzuki, and Y. Kawata (2011) Crystal structure of the cambialistic superoxide dismutase from Aeropyrum pernix K1—insights into the enzyme mechanism and stability. FEBS J. 278: 598–609.

    Article  CAS  PubMed  Google Scholar 

  18. Zhu, Y., G. Wang, H. Ni, A. Xiao, and H. Cai (2014) Cloning and characterization of a new manganese superoxide dismutase from deep-sea thermophile Geobacillus sp. EPT3. World J. Microbiol. Biotechnol. 30: 1347–1357.

    Article  CAS  PubMed  Google Scholar 

  19. Whittaker, J. R. (1994) Principles of enzymology for the food sciences. 2nd ed. CRC Press.

    Google Scholar 

  20. Belitz, H. D. and W. G. Peter Schieberle (1999) Food Chemistry. 2nd ed. Springer-Verlag.

    Book  Google Scholar 

  21. Henley, J. P. and A. Sadana (1985) Categorization of enzyme deactivations using a series-type mechanism. Enz. Microb. Technol. 7: 50–60.

    Article  CAS  Google Scholar 

  22. Tran, D. T. and J. S. Chang (2014) Kinetics of enzymatic transesterification and thermal deactivation using immobilized Burkholderia lipase as catalyst. Bioproc. Biosyst. Eng. 37: 481–491.

    Article  CAS  Google Scholar 

  23. Peterson, M. E., R. M. Daniel, M. J. Danson, and R. Eisenthal (2007) The dependence of enzyme activity on temperature: Determination and validation of parameters. Biochem. J. 402: 331–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Amo, T., H. Atomi, and T. Imanaka (2003) Biochemical properties and regulated gene expression of the superoxide dismutase from the facultatively aerobic hyperthermophile Pyrobaculum calidifontis. J. Bacteriol. 185: 6340–6347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lim, J. H., K. Y. Hwang, J. Choi, D. Y. Lee, B. Y. Ahn, Y. Cho, K. S. Kim, and Y. S. Han (2001) Mutational effects on thermostable superoxide dismutase from Aquifex pyrophilus: understanding the molecular basis of protein thermostability. Biochem. Biophys. Res. Commun. 288: 263–268.

    Article  CAS  PubMed  Google Scholar 

  26. Wintjens, R., C. Noël, A. C. May, D. Gerbod, F. Dufernez, M. Capron, E. Viscogliosi, and M. Rooman (2004) Specificity and phenetic relationships of iron- and manganese-containing superoxide dismutases on the basis of structure and sequence comparisons. J. Biol. Chem. 279: 9248–9254.

    Article  CAS  PubMed  Google Scholar 

  27. Eisenthal, R., M. E. Peterson, R. M. Daniel, and M. J. Danson (2006) The thermal behaviour of enzyme activity: Implications for biotechnology. Trends Biotechnol. 24: 289–292.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Guo, S., Li, X. et al. Engineering a highly thermostable and stress tolerant superoxide dismutase by N-terminal modification and metal incorporation. Biotechnol Bioproc E 22, 725–733 (2017). https://doi.org/10.1007/s12257-017-0243-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0243-8

Keywords

Navigation