Biotechnology and Bioprocess Engineering

, Volume 22, Issue 6, pp 725–733 | Cite as

Engineering a highly thermostable and stress tolerant superoxide dismutase by N-terminal modification and metal incorporation

  • Mingchang Li
  • Shuyi Guo
  • Xiaomin Li
  • Quan Wang
  • Lin Zhu
  • Chunyan Yin
  • Wei Wang
Research Paper
  • 15 Downloads

Abstract

Thermophilic or hyperthermophilic SODs (superoxide dismutase) usually offer substantial biotechnological advantages over mesophilic SODs. Previously a 244-amino acid N-terminal domain (NTD) from a heatresistant SOD of Geobacillus thermodenitrificans NG80-2 was discovered and demonstrated to be able to confer thermostability to homologous mesophilic SODs, which revealed a new type of heat resistance mechanism. To further improve the heat resistance and stress tolerance of thermophilic cambialistic superoxide dismutase (Fe/Mn- SOD Ap ) from Aeropyrum pernix K1 through metal incorporation and fusion with the newly found peptide NTD for broadening its industrial application, the wildtype SOD Ap and NTD-fused ntdSOD Ap were expressed in E. coli BL21 and incorporated with metal cofactors by two ways. Recombinant fusion SOD obtained by in vitro reconstitution (Mn-rec ntdSOD Ap ) exhibited improved optimum temperature at 70°C and dramatically enhanced thermostability especially at 110°C with enhanced pH stability from 4 to 10 and higher tolerance for denaturants and organic media than Mn-rec SOD Ap . To the best of our knowledge, Mn-rec ntdSOD Ap could be the most heat resistant SOD. In addition, metal incorporation of SOD Ap and ntdSOD Ap via in vivo modification have been developed and proved to be more practical for industrial use. These results indicate that fusion with NTD along with metal incorporation can generate superimposed effect and be applied to enhance the stability of cambialistic thermophilic SODs, thus providing a universal and convenient bioengineering method for generating extremely stable SODs.

Keywords

Aeropyrum pernix K1 Geobacillus thermodenitrificans NG80-2 metal incorporation superoxide dismutase stress tolerance thermostability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fridovich, I. (1978) Superoxide dismutases: Defence against endogenous superoxide radical. Ciba Found. Symp. 77–93.Google Scholar
  2. 2.
    Bafana, A., S. Dutt, S. Kumar, and P. S. Ahuja (2011) Superoxide dismutase: An industrial perspective. Crit.l Rev. Biotechnol. 31: 65–76.CrossRefGoogle Scholar
  3. 3.
    Vieille, C. and G. J. Zeikus (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65: 1–43.CrossRefGoogle Scholar
  4. 4.
    Kumar, A., S. Dutt, G. Bagler, P. S. Ahuja, and S. Kumar (2012) Engineering a thermo-stable superoxide dismutase functional at sub-zero to >50 degrees C, which also tolerates autoclaving. Sci. Rep. 2: 387.CrossRefGoogle Scholar
  5. 5.
    Song, C., L. Sheng, and X. Zhang (2012) Preparation and characterization of a thermostable enzyme (Mn-SOD) immobilized on supermagnetic nanoparticles. Appl. Microbiol. Biotechnol. 96: 123–132.CrossRefGoogle Scholar
  6. 6.
    Pinto, V. H., D. Carvalhoda-Silva, J. L. Santos, T. Weitner, M. G. Fonseca, M. I. Yoshida, Y. M. Idemori, I. Batinic-Haberle, and J. S. Reboucas (2013) Thermal stability of the prototypical Mn porphyrin-based superoxide dismutase mimic and potent oxidative-stress redox modulator Mn(III) meso-tetrakis(Nethylpyridinium-2-yl)porphyrin chloride, MnTE-2-PyP(5+). J. Pharm. Biomed. Anal. 73: 29–34.CrossRefGoogle Scholar
  7. 7.
    Zhang, H. W., F. S. Wang, W. Shao, X. L. Zheng, J. Z. Qi, J. C. Cao, and T. M. Zhang (2006) Characterization and stability investigation of Cu,Zn-superoxide dismutase covalently modified by low molecular weight heparin. Biochem. 71: S96–100, 105.Google Scholar
  8. 8.
    Hartman, J. R., T. Geller, Z. Yavin, D. Bartfeld, D. Kanner, H. Aviv, and M. Gorecki (1986) High-level expression of enzymatically active human Cu/Zn superoxide dismutase in Escherichia coli. Proc. Natl. Acad. Sci. USA. 83: 7142–7146.CrossRefGoogle Scholar
  9. 9.
    Wang, W., T. Ma, B. Zhang, N. Yao, M. Li, L. Cui, G. Li, Z. Ma, and J. Cheng (2014) A novel mechanism of protein thermostability: A unique N-terminal domain confers heat resistance to Fe/Mn-SODs. Sci. Rep. 4: 7284.CrossRefGoogle Scholar
  10. 10.
    Li, M., L. Zhu, and W. Wang (2016) Improving the thermostability and stress tolerance of an archaeon hyperthermophilic superoxide dismutase by fusion with a unique N-terminal domain. Springerplus 5: 241.CrossRefGoogle Scholar
  11. 11.
    Yamano, S., Y. Sako, N. Nomura, and T. Maruyama (1999) A cambialistic SOD in a strictly aerobic hyperthermophilic archaeon, Aeropyrum pernix. J. Biochem. 126: 218–225.CrossRefGoogle Scholar
  12. 12.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.CrossRefGoogle Scholar
  13. 13.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.CrossRefGoogle Scholar
  14. 14.
    Kirby, T., J. Blum, I. Kahane, and I. Fridovich (1980) Distinguishing between Mn-containing and Fe-containing superoxide dismutases in crude extracts of cells. Arch. Biochem. Biophys. 201: 551–555.CrossRefGoogle Scholar
  15. 15.
    Nam, J. S., J. H. Yoon, H. I. Lee, S. W. Kim, and Y. T. Ro (2011) Molecular cloning, purification, and characterization of a superoxide dismutase from a fast-growing Mycobacterium sp. Strain JC1 DSM 3803. J. Microbiol. 49: 399–406.Google Scholar
  16. 16.
    Beauchamp, C. and I. Fridovich (1971) Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44: 276–287.CrossRefGoogle Scholar
  17. 17.
    Nakamura, T., K. Torikai, K. Uegaki, J. Morita, K. Machida, A. Suzuki, and Y. Kawata (2011) Crystal structure of the cambialistic superoxide dismutase from Aeropyrum pernix K1—insights into the enzyme mechanism and stability. FEBS J. 278: 598–609.CrossRefGoogle Scholar
  18. 18.
    Zhu, Y., G. Wang, H. Ni, A. Xiao, and H. Cai (2014) Cloning and characterization of a new manganese superoxide dismutase from deep-sea thermophile Geobacillus sp. EPT3. World J. Microbiol. Biotechnol. 30: 1347–1357.CrossRefGoogle Scholar
  19. 19.
    Whittaker, J. R. (1994) Principles of enzymology for the food sciences. 2nd ed. CRC Press.Google Scholar
  20. 20.
    Belitz, H. D. and W. G. Peter Schieberle (1999) Food Chemistry. 2nd ed. Springer-Verlag.CrossRefGoogle Scholar
  21. 21.
    Henley, J. P. and A. Sadana (1985) Categorization of enzyme deactivations using a series-type mechanism. Enz. Microb. Technol. 7: 50–60.CrossRefGoogle Scholar
  22. 22.
    Tran, D. T. and J. S. Chang (2014) Kinetics of enzymatic transesterification and thermal deactivation using immobilized Burkholderia lipase as catalyst. Bioproc. Biosyst. Eng. 37: 481–491.CrossRefGoogle Scholar
  23. 23.
    Peterson, M. E., R. M. Daniel, M. J. Danson, and R. Eisenthal (2007) The dependence of enzyme activity on temperature: Determination and validation of parameters. Biochem. J. 402: 331–337.CrossRefGoogle Scholar
  24. 24.
    Amo, T., H. Atomi, and T. Imanaka (2003) Biochemical properties and regulated gene expression of the superoxide dismutase from the facultatively aerobic hyperthermophile Pyrobaculum calidifontis. J. Bacteriol. 185: 6340–6347.CrossRefGoogle Scholar
  25. 25.
    Lim, J. H., K. Y. Hwang, J. Choi, D. Y. Lee, B. Y. Ahn, Y. Cho, K. S. Kim, and Y. S. Han (2001) Mutational effects on thermostable superoxide dismutase from Aquifex pyrophilus: understanding the molecular basis of protein thermostability. Biochem. Biophys. Res. Commun. 288: 263–268.CrossRefGoogle Scholar
  26. 26.
    Wintjens, R., C. Noël, A. C. May, D. Gerbod, F. Dufernez, M. Capron, E. Viscogliosi, and M. Rooman (2004) Specificity and phenetic relationships of iron- and manganese-containing superoxide dismutases on the basis of structure and sequence comparisons. J. Biol. Chem. 279: 9248–9254.CrossRefGoogle Scholar
  27. 27.
    Eisenthal, R., M. E. Peterson, R. M. Daniel, and M. J. Danson (2006) The thermal behaviour of enzyme activity: Implications for biotechnology. Trends Biotechnol. 24: 289–292.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Mingchang Li
    • 1
  • Shuyi Guo
    • 1
  • Xiaomin Li
    • 2
  • Quan Wang
    • 3
  • Lin Zhu
    • 1
  • Chunyan Yin
    • 1
  • Wei Wang
    • 1
    • 4
  1. 1.Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and BiotechnologyNankai UniversityTianjinChina
  2. 2.National Engineering Laboratory for Cereal Fermentation Technology, School of BiotechnologyJiangnan UniversityWuxiChina
  3. 3.Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, School of Basic Medical SciencesTianjin Medical UniversityTianjinChina
  4. 4.Tianjin Key Laboratory of Microbial Functional GenomicsTEDATianjinChina

Personalised recommendations