Caveolin-1 Expression Together with VEGF can be a Predictor for Lung Metastasis and Poor Prognosis in Osteosarcoma

A Correction to this article was published on 21 January 2020

This article has been updated


Caveolin-1, the major protein component of caveolae, plays vital functions in tumorigenesis and metastasis. Previous evidence demonstrated the positive role of Caveolin-1 in the regulation of endothelial cell differentiation and the involvement of Caveolin-1 in vascular endothelial growth factor (VEGF) mediated angiogenesis. The correlation of Caveolin-1 expression and angiogenesis is not yet elucidated in osteosarcoma. This study aimed to investigate the expression levels of Caveolin-1 and VEGF in osteosarcoma and their associations with clinicopathological data. This study included 66 formalin-fixed and paraffin embedded osteosarcoma tissue samples. The expression levels of Caveolin-1 and VEGF were assessed by immunohistochemistry. Then associations with clinicopathological variables and the correlation between both markers were evaluated statistically. We also investigated the expression of Caveolin-1 and VEGF values in gene microarrays of osteosarcoma patients and cell lines by using GEO data sets on Caveolin-1 and VEGF were expressed in 19.6% and 77.3%, respectively. Caveolin-1 expression was associated positively with osteoblastic histological subtype (P < 0.0001). VEGF expression showed positive association with patient age, histological grade and clinical stage (P = 0.031, P = 0.024 and P < 0.001; respectively). An inverse correlation between Caveolin-1 and VEGF expressions in osteosarcoma was found (r = 0.2 P = 0.04). In silico analysis of Caveolin-1 and VEGF expression supported our results. Our results suggest that Caveolin-1 may act as a tumor suppressor in osteosarcoma. Down-regulation of Caveolin-1 can be used as an indicator for poor prognosis in osteosarcoma patients. Meanwhile, overexpression of VEGF is a predictor of pulmonary metastasis and poor prognosis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Change history

  • 21 January 2020

    The original version of this article unfortunately contained an error. The Tables 1 and 2 were missing in the published paper.


  1. 1.

    Isakoff MS, Bielack SS, Meltzer P, Gorlick R (2015) Osteosarcoma: Current treatment and a collaborative pathway to success. J Clin Oncol 33:3029–3035.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Klein MJ, Siegal GP (2006) Osteosarcoma: anatomic and histologic variants. Am J Clin Pathol 125(4):555–581.

    Article  PubMed  Google Scholar 

  3. 3.

    Rubin P, Williams JP, Devesa SS, Travis LB, Constine LS (2010) Cancer genesis across the age spectrum: associations with tissue development, maintenance, and senescence. Semin Radiat Oncol 20:3–11.

    Article  PubMed  Google Scholar 

  4. 4.

    Fletcher CD, Bridge J, Hogendoorn PC, Mertens F (eds) (2013) The World Health Organization Classification of Tumors of Soft Tissue and Bone. IARC, Lyon

    Google Scholar 

  5. 5.

    Zalupski MM, Rankin C, Ryan JR, Lucas DR, Muler J, Lanier KS, Budd GT, Biermann JS, Meyers FJ, Antman K (2004) Adjuvant therapy of osteosarcoma–a phase II trial: Southwest Oncology Group study 9139. Cancer 100(4):818–825.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Wada T, Isu K, Takeda N, Usui M, Ishii S, Yamawaki S (1996) A preliminary report of neoadjuvant chemotherapy NSH-7 study in osteosarcoma: preoperative salvage chemotherapy based on clinical tumor response and the use of granulocyte colony-stimulating factor. Oncology 53:221–227.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Xie Y, Huang J, Wu M, Zhou Y (2018) Expression of CD133 protein in osteosarcoma and its relationship with the clinicopathological features and prognosis. J Cancer Res Ther 14:892–895.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Xu M, Xie Y, Sheng W, Miao J, Yang J (2015) Adenovirus-mediated ING4 Gene Transfer in Osteosarcoma Suppresses Tumor Growth via Induction of Apoptosis and Inhibition of Tumor Angiogenesis. Technology in Cancer Research and Treatment 14:369–378.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Kaya M, Wada T, Akatsuka T, Kawaguchi S, Nagoya S, Shindoh M, Higashino F, Mezawa F, Okada F, Ishii S (2000) Vascular endothelial growth factor expression in untreated osteosarcoma is predictive of pulmonary metastasis and poor prognosis. Clin Cancer Res 6(2):572–577

    CAS  PubMed  Google Scholar 

  10. 10.

    DuBois S, Demetri G (2007) Markers of angiogenesis and clinical features in patientswith sarcoma. Cancer 109(5):813–981.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Dvorak HF, Sioussat TM, Brown LF, Berse B, Nagy JA, Sotrel A, Manseau EJ, Van de Water L, Senger DR (1991) Distribution of vascular permeability factor (vascular endothelial growth factor) in tumors: concentration in tumor blood vessels. J Exp Med 174(5):1275–1278

    CAS  Article  Google Scholar 

  12. 12.

    Cohen AW, Hnasko R, Schubert W, Lisanti MP (2004) Role of caveolae and caveolins in health and disease. Physiol Rev 84:1341–1379.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Schwencke C, Braun-Dullaeus RC, Wunderlich C, Strasser RH (2006) Caveolae and caveolin in transmembrane signaling: Implications for human disease. Cardiovasc Res 70(1):42–49.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Stan RV (2005) Structure of caveolae. Journal of Biochimica et Biophysica Acta 1746:334–348.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Smart EJ, Graf GA, McNiven MA, Sessa WC, Engelman JA, Scherer PE, Okamoto T, Lisanti MP (1999) Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol 19:7289–7304

    CAS  Article  Google Scholar 

  16. 16.

    Solomon KR, Danciu TE, Adolphson LD, Hecht LE, Hauschka PV (2000) Caveolin-enriched membrane signaling complexes in human and murine osteoblasts. J Bone Miner Res 15:2380–2390.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Solomon KR, Adolphson LD, Wank DA, McHugh KP, Hauschka PV (2000) Caveolae in human and murine osteoblasts. J Bone Miner Res 15:2391–2401.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Wiechen K, Sers C, Agoulnik A, Arlt K, Dietel M, Schlag PM, Schneider U (2001) Down-regulation of caveolin-1, a candidate tumor suppressor gene, in sarcomas. Am J Pathol 158:833–839.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Belanger MM, Roussel E, Couet J (2004) Caveolin-1 is down-regulated in human lung carcinoma and acts as a candidate tumor suppressor gene. Chest 125(5 suppl):106S.

    Article  PubMed  Google Scholar 

  20. 20.

    Wiechen K, Diatchenko L, Agoulnik A, Scharff KM, Schober H, Arlt K, Zhumabayeva B, Siebert PD, Dietel M, Schäfer R, Sers C (2001) Caveolin-1 is down-regulated in human ovarian carcinoma and acts as a candidate tumor suppressor gene. Am J Pathol 159:1635–1643.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Kato K, Hida Y, Miyamoto M, Hashida H, Shinohara T, Itoh T, Okushiba S, Kondo S, Katoh H (2002) Overexpression of caveolin-1 in esophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage. Cancer 94:929–933.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Yang G, Truong LD, Wheeler TM, Thompson TC (1999) Caveolin- 1 expression in clinically confined human prostate cancer: a novel prognostic marker. Cancer Res 59:5719–5723

    CAS  PubMed  Google Scholar 

  23. 23.

    Cantiani L, Manara MC, Zucchini C, De Sanctis P, Zuntini M, Valvassori L, Serra M, Olivero M, Di Renzo MF, Colombo MP, Picci P, Scotlandi K (2007) Caveolin-1 Reduces Osteosarcoma Metastases by Inhibiting c-Src Activity and Met Signaling. Cancer Res 67(16):7675–7685.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Carver LA, Schnitzer JE (2003) Caveolae: mining little caves for new cancer targets. Nat Rev Cancer 3:571–581.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Krajewska WM, Maslowska I (2004) Caveolins: structure and function in signal transduction. Cell Mol Biol Lett 9:195–220

    CAS  PubMed  Google Scholar 

  26. 26.

    Williams TM, Lisanti MP (2005) Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol 288:494–506.

    CAS  Article  Google Scholar 

  27. 27.

    Liu J, Wang XB, Park DS, Lisanti MP (2002) Caveolin-1 expression enhances endothelial capillary tubule formation. J Biol Chem 277:10661–10668.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Deurs B, Roepstorff K, Hommelgaard AM, Sandvig K (2003) Caveolae: anchored, multifunctional platforms in the lipid ocean. Trends Cell Biol 13:92–100.

    Article  PubMed  Google Scholar 

  29. 29.

    Razani B, Woodman SE, Lisanti MP (2002) Caveolae: from cell biology to animal physiology. Pharmacol Rev 54:431–467

    CAS  Article  Google Scholar 

  30. 30.

    Feron O, Kelly RA (2001) The caveolar paradox: suppressing, inducing, and terminating eNOS signaling. Circ Res 88:129–131

    CAS  Article  Google Scholar 

  31. 31.

    Chen J, Braet F, Brodsky S, Weinstein T, Romanov V, Noiri E, Goligorsky MS (2002) VEGF-induced mobilization of caveolae and increase in permeability of endothelial cells. Am J Phys 282(5):C1053–C1063.

    CAS  Article  Google Scholar 

  32. 32.

    Shi L, Chen XM, Wang L, Zhang L, Chen Z (2007) Expression of Caveolin-1 in Mucoepidermoid Carcinoma of the Salivary Glands: Correlation with Vascular Endothelial Growth Factor, Microvessel Density, and Clinical Outcome. CANCER 109(8):1523–1531.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Tahir SA, Park S, Thompson TC (2009) Caveolin-1 regulates VEGF-stimulated angiogenic activities in prostate cancer and endothelial cells. Cancer Biol Ther 8(23):2286–2296

    Article  Google Scholar 

  34. 34.

    Gamallo C, Palacios J, Moreno G, Calvo de Mora J, Suarez A, Armas A (1999) Beta-catenin expression pattern in stage I and II ovarian carcinomas: relationship with beta-catenin gene mutations, clinicopathological features, and clinical outcome. Am J Pathol 155:527–536

    CAS  Article  Google Scholar 

  35. 35.

    Galbiati F, Volonte D, Engelman JA et al (1998) Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO J 17:6633–6648

    CAS  Article  Google Scholar 

  36. 36.

    Koleske AJ, Baltimore D, Lisanti MP (1995) Reduction of caveolin and caveolae in oncogenically transformed cells. Proc Natl Acad Sci U S A 92:1381–1385

    CAS  Article  Google Scholar 

  37. 37.

    Sloan EK, Stanley KL, Anderson RL (2004) Caveolin-1 inhibits breast cancer growth and metastasis. Oncogene 23:7893–7897

    CAS  Article  Google Scholar 

  38. 38.

    Hu YC, Lam KY, Law S et al (2001) Profiling of differentially expressed cancer-related genes in esophageal squamous cell carcinoma (ESCC) using human cancer cDNA arrays: overexpression of oncogene MET correlates with tumor differentiation in ESCC. Clin Cancer Res 7:3519–3525

    CAS  PubMed  Google Scholar 

  39. 39.

    Fong A, Garcia E, Gwynn L et al (2003) Expression of caveolin-1 and caveolin-2 in urothelial carcinoma of the urinary bladder correlates with tumor grade and squamous differentiation. Am J Clin Pathol 120:93–100

    CAS  Article  Google Scholar 

  40. 40.

    Li L, Yang G, Ebara S et al (2001) Caveolin-1 mediates testosterone stimulate survival/clonal growth and promotes metastatic activities in prostate cancer cells. Cancer Res 61:4386–4392

    CAS  PubMed  Google Scholar 

  41. 41.

    Tirado OM, Mateo-Lozano S, Villar J, Dettin LE, Llort A, Gallego S, Ban J, Kovar H, Notario V (2006) Caveolin-1 (CAV1) is a target of EWS/FLI-1 and a key determinant of the oncogenic phenotype and tumorigenicity of Ewing’s sarcoma cells. Cancer Res 66:9937–9947.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Lee H, Volonte D, Galbiati F, Lyengar P, Lublin MD, Bregman DB, Wilson MT, Campos-Gonzalez R, Bouzahzah B, Pestell RG, Scherer PE, Lisanti MP (2000) Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/ Cav-1/Grb7 signaling cassette. Mol Endocrinol 14:1750–1775.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Oda Y, Yamamoto H, Tamiya S, Matsuda S, Tanaka K, Yokoyama R, Iwamoto Y, Tsuneyoshi M (2006) CXCR4 and VEGF expression in the primary site and the metastatic site of human osteosarcoma: analysis within a group of patients, all of whom developed lung metastasis. Mod Pathol 19(5):738–745.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Bajpai J, Sharma M, Sreenivas V, Kumar R, Gamnagatti S, Khan SA, Rastogi S, Malhotra A, Bakhshi S (2009) VEGF expression as a prognostic marker in osteosarcoma. Pediatr Blood Cancer 53(6):1035–1039.

    Article  PubMed  Google Scholar 

  45. 45.

    Lammli J, Fan M, Rosenthal HG, Patni M, Rinehart E, Vergara G, Ablah E, Wooley PH, Lucas G, Yang SY (2012) Expression of Vascular Endothelial Growth Factor correlates with the advance of clinical osteosarcoma. Int Orthop 36(11):2307–2313.

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Ługowska I, Woźniak W, Klepacka T, Michalak E, Szamotulska K (2011) A prognostic evaluation of vascular endothelial growth factor in children and young adults with osteosarcoma. Pediatr Blood Cancer 57(1):63–68.

    Article  PubMed  Google Scholar 

  47. 47.

    Becker RG, Galia CR, Morini S, Viana CR (2013) Immunohistochemical expression of VEGF and her-2 proteins in osteosarcoma biopsies. Acta Ortopedica Brasileira 21(4):233–238.

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Baptista AM, Camargo AF, Filippi RZ, Oliveira CR, Azevedo Neto RS, Camargo OP (2014) Correlation between the expression of vegf and Survival in osteosarcoma. Acta Ortopedica Brasileira 22(5):250–255.

  49. 49.

    Zhao J, Zhang Z, Zhao N, Ma BA, Fan QU (2015) VEGF silencing inhibits human osteosarcoma angiogenesis and promotes cell apoptosis via PI3K/AKT signaling pathway. Cell Biochem Biophys 73(2):519–525.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Mizobuchi H, García-Castellano JM, Philip S, Healey JH, Gorlick R (2008) Hypoxia markers in human osteosarcoma: an exploratory study. Clin Orthop Relat Res 466(9):2052–2059.

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Zhou Q, Zhu Y, Deng Z, Long H, Zhang S, Chen X (2011) VEGF and EMMPRIN expression correlates with survival of patients with osteosarcoma. Surg Oncol 20(1):13–19.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Hassan SE, Bekarev M, Kim MY, Lin J, Piperdi S, Gorlick R, Geller DS (2012) Cell surface receptor expression patterns in osteosarcoma. Cancer 118:740–749.

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Chen D, Zhang YJ, Zhu KW, Wang WC (2013) A systematic review of vascular endothelial growth factor expression as a biomarker of prognosis in patients with osteosarcoma. Tumour Biol 34(3):1895–1899.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Ohba T, Cates JM, Cole HA, Slosky DA, Haro H, Ando T, Schwartz HS, Schoenecker JG (2014) Autocrine VEGF/VEGFR1 signaling in a subpopulation of cells associates with aggressive osteosarcoma. Mol Cancer Res 12:1100–1111.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Yu XW, Wu TY, Yi X, Ren WP, Zhou ZB, Sun YQ, Zhang CQ (2014) Prognostic significance of VEGF expression in osteosarcoma: a meta-analysis. Tumour Biol 35:155–160.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Daft PG, Yang Y, Napierala D, Zayzafoon M (2015) The Growth and Aggressive Behavior of Human Osteosarcoma Is Regulated by a CaMKII-Controlled Autocrine VEGF Signaling Mechanism. PLoS One 10(4):1–20. e0121568.

    Article  Google Scholar 

  57. 57.

    Tang Y, Zeng X, He F, Liao Y, Qian N, Toi M (2012) Caveolin-1 is related to invasion, survival, and poor prognosis in hepatocellular cancer. Med Oncol 29(2):977–984.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Hoffman R (2004) Do the signalling proteins for angiogenesis exist as a modular complex? The case for the angosome. Med Hypotheses 63:675–680

    CAS  Article  Google Scholar 

  59. 59.

    Wu T, Zhang B, Ye F, Xiao Z (2013) A potential role for caveolin-1 in VEGF-induced fibronectin upregulation in mesangial cells: involvement of VEGFR2 and Src. Am J Physiol Ren Physiol 304:F820–F830.

    CAS  Article  Google Scholar 

  60. 60.

    Liu J, Razani B, Tang S, Terman BI, Ware JA, Lisanti MP (1999) Angiogenesis activators and inhibitors differentially regulate caveolin-1 expression and caveolae formation in vascular endothelial cells. Angiogenesis inhibitors block vascular endothelial growth factor-induced downregulation of caveolin-1. J Biol Chem 274:15781–15785.

    CAS  Article  PubMed  Google Scholar 

Download references


This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information




All authors contribute equally in this work.

Corresponding author

Correspondence to El Zahraa Ibrahim Khalil.

Ethics declarations

Conflict of Interests

All the authors have no potential conflicts (financial, professional, or personal) relevant to the manuscript to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised due to missing Tables 1 and 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohamed, F.EZ.A., Khalil, E.Z.I. & Toni, N.D.M. Caveolin-1 Expression Together with VEGF can be a Predictor for Lung Metastasis and Poor Prognosis in Osteosarcoma. Pathol. Oncol. Res. 26, 1787–1795 (2020).

Download citation


  • Caveolin-1
  • Vascular endothelial growth factor
  • Osteosarcoma
  • Immunohistochemistry