Skip to main content

Advertisement

Log in

Downregulated Adhesion-Associated microRNAs as Prognostic Predictors in Childhood Osteosarcoma

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

miRNAs have been identified as key regulators of almost all cellular processes, therefore, their dysregulation is involved with several diseases, including cancer. miRNAs specifically related to the metastastic cascade are called metastamiRs and can be involved with different steps of this process, including loss of adhesion. Osteosarcoma (OS) is the most common primary malignant pediatric bone tumor that often presents metastatic disease at diagnosis; therefore, a deeper study of adhesion-associated miRNAs could shed light on its pathophysiology. Online databases were used to select four miRNAs (miR-139; miR-181b; miR-584; miR-708) predicted or validated to target proteins related to adherent junctions and focal adhesion pathways, and their expression levels and possible associations with clinical features evaluated in primary OS samples. Our results showed downregulation of miR-139-5p and miR-708-5p in OS samples compared to non-neoplastic controls. Moreover, lower expression of miR-708-5p was associated with poor overall survival and higher expression of miR-181b-5p related to worst chemotherapy response (low HUVOS level). Based on these results, we selected miR-139-5p and miR-708-5p for further functional testing. Inducing the expression of miR-139-5p diminished the clonogenic capacity of the HOS cell line, while upregulation of miR-708-5p was related to a lower cellular adhesion. In summary, this work identified new signatures of microRNA dysregulation that may serve as useful prognostic markers in this aggressive pediatric bone tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gee HE, Ivan C, Calin GA, Ivan M (2014) HypoxamiRs and cancer: from biology to targeted therapy. Antioxid Redox Signal 21(8):1220–1238. https://doi.org/10.1089/ars.2013.5639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Olivieri F, Rippo MR, Procopio AD, Fazioli F (2013) Circulating inflamma-miRs in aging and age-related diseases. Front Genet 4:121. https://doi.org/10.3389/fgene.2013.00121

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schickel R, Boyerinas B, Park SM, Peter ME (2008) MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 27(45):5959–5974. https://doi.org/10.1038/onc.2008.274

    Article  CAS  PubMed  Google Scholar 

  4. Tutar L, Tutar E, Özgür A, Tutar Y (2015) Therapeutic Targeting of microRNAs in Cancer: Future Perspectives. Drug Dev Res 76(7):382–388. https://doi.org/10.1002/ddr.21273

    Article  CAS  PubMed  Google Scholar 

  5. Hurst DR, Edmonds MD, Welch DR (2009) Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Res 69(19):7495–7498. https://doi.org/10.1158/0008-5472.CAN-09-2111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sengupta S, den Boon JA, Chen IH, Newton MA, Stanhope SA, Cheng YJ, Chen CJ, Hildesheim A, Sugden B, Ahlquist P (2008) MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc Natl Acad Sci U S A 105(15):5874–5878. https://doi.org/10.1073/pnas.0801130105

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tavazoie SF, Alarcón C, Oskarsson T, Padua D, Wang Q, Bos PD, Gerald WL, Massagué J (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451(7175):147–152. https://doi.org/10.1038/nature06487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gregory PA, Bracken CP, Bert AG, Goodall GJ (2008) MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle 7(20):3112–3118. https://doi.org/10.4161/cc.7.20.6851

    Article  CAS  PubMed  Google Scholar 

  9. Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449(7163):682–688. https://doi.org/10.1038/nature06174

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, Li Z, Zhao X, Zuo X, Peng Z (2016) miR-10b promotes invasion by targeting HOXD10 in colorectal cancer. Oncol Lett 12(1):488–494. https://doi.org/10.3892/ol.2016.4628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18(3):350–359. https://doi.org/10.1038/cr.2008.24

    Article  CAS  PubMed  Google Scholar 

  12. Hurst DR, Edmonds MD, Scott GK, Benz CC, Vaidya KS, Welch DR (2009) Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Res 69(4):1279–1283. https://doi.org/10.1158/0008-5472.CAN-08-3559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Massagué J, Obenauf AC (2016) Metastatic colonization by circulating tumour cells. Nature 529(7586):298–306. https://doi.org/10.1038/nature17038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Talmadge JE, Fidler IJ (2010) AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res 70(14):5649–5669. https://doi.org/10.1158/0008-5472.CAN-10-1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nicoloso MS, Spizzo R, Shimizu M, Rossi S, Calin GA (2009) MicroRNAs--the micro steering wheel of tumour metastases. Nat Rev Cancer 9(4):293–302. https://doi.org/10.1038/nrc2619

    Article  CAS  PubMed  Google Scholar 

  16. Le XF, Merchant O, Bast RC, Calin GA (2010) The Roles of MicroRNAs in the Cancer Invasion-Metastasis Cascade. Cancer Microenviron 3(1):137–147. https://doi.org/10.1007/s12307-010-0037-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A, Anile C, Maira G, Mercatelli N, Ciafrè SA, Farace MG, Agami R (2007) Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 26(15):3699–3708. https://doi.org/10.1038/sj.emboj.7601790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, Song E (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131(6):1109–1123. https://doi.org/10.1016/j.cell.2007.10.054

    Article  CAS  PubMed  Google Scholar 

  19. Gorlick R, Khanna C (2010) Osteosarcoma. J Bone Miner Res 25(4):683–691. https://doi.org/10.1002/jbmr.77

    Article  PubMed  Google Scholar 

  20. Kushlinskii NE, Fridman MV, Braga EA (2016) Molecular Mechanisms and microRNAs in Osteosarcoma Pathogenesis. Biochemistry (Mosc) 81(4):315–328. https://doi.org/10.1134/S0006297916040027

    Article  CAS  Google Scholar 

  21. Ram Kumar RM, Boro A, Fuchs B (2016) Involvement and Clinical Aspects of MicroRNA in Osteosarcoma. Int J Mol Sci 17(6). https://doi.org/10.3390/ijms17060877

  22. Geng S, Zhang X, Chen J, Liu X, Zhang H, Xu X, Ma Y, Li B, Zhang Y, Bi Z, Yang C (2014) The tumor suppressor role of miR-124 in osteosarcoma. PLoS One 9(6):e91566. https://doi.org/10.1371/journal.pone.0091566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao H, Li M, Li L, Yang X, Lan G, Zhang Y (2013) MiR-133b is down-regulated in human osteosarcoma and inhibits osteosarcoma cells proliferation, migration and invasion, and promotes apoptosis. PLoS One 8(12):e83571. https://doi.org/10.1371/journal.pone.0083571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang J, Gao K, Lin J, Wang Q (2014) MicroRNA-100 inhibits osteosarcoma cell proliferation by targeting Cyr61. Tumour Biol 35(2):1095–1100. https://doi.org/10.1007/s13277-013-1146-8

    Article  CAS  PubMed  Google Scholar 

  25. Wu P, Liang J, Yu F, Zhou Z, Tang J, Li K (2016) miR-145 promotes osteosarcoma growth by reducing expression of the transcription factor friend leukemia virus integration 1. Oncotarget. doi:10.18632/oncotarget.9948

  26. Li X, Yang H, Tian Q, Liu Y, Weng Y (2014) Upregulation of microRNA-17-92 cluster associates with tumor progression and prognosis in osteosarcoma. Neoplasma 61(4):453–460. https://doi.org/10.4149/neo_2014_056

    Article  CAS  PubMed  Google Scholar 

  27. Huang G, Nishimoto K, Zhou Z, Hughes D, Kleinerman ES (2012) miR-20a encoded by the miR-17-92 cluster increases the metastatic potential of osteosarcoma cells by regulating Fas expression. Cancer Res 72(4):908–916. https://doi.org/10.1158/0008-5472.CAN-11-1460

    Article  CAS  PubMed  Google Scholar 

  28. Ma C, Zhan C, Yuan H, Cui Y, Zhang Z (2016) MicroRNA-603 functions as an oncogene by suppressing BRCC2 protein translation in osteosarcoma. Oncol Rep 35(6):3257–3264. https://doi.org/10.3892/or.2016.4718

    Article  CAS  PubMed  Google Scholar 

  29. Xu SH, Yang YL, Han SM, Wu ZH (2014) MicroRNA-9 expression is a prognostic biomarker in patients with osteosarcoma. World J Surg Oncol 12:195. https://doi.org/10.1186/1477-7819-12-195

    Article  PubMed  PubMed Central  Google Scholar 

  30. Maire G, Martin JW, Yoshimoto M, Chilton-MacNeill S, Zielenska M, Squire JA (2011) Analysis of miRNA-gene expression-genomic profiles reveals complex mechanisms of microRNA deregulation in osteosarcoma. Cancer Genet 204(3):138–146. https://doi.org/10.1016/j.cancergen.2010.12.012

    Article  CAS  PubMed  Google Scholar 

  31. Jones KB, Salah Z, Del Mare S, Galasso M, Gaudio E, Nuovo GJ, Lovat F, LeBlanc K, Palatini J, Randall RL, Volinia S, Stein GS, Croce CM, Lian JB, Aqeilan RI (2012) miRNA signatures associate with pathogenesis and progression of osteosarcoma. Cancer Res 72(7):1865–1877. https://doi.org/10.1158/0008-5472.CAN-11-2663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Namløs HM, Meza-Zepeda LA, Barøy T, Østensen IH, Kresse SH, Kuijjer ML, Serra M, Bürger H, Cleton-Jansen AM, Myklebost O (2012) Modulation of the osteosarcoma expression phenotype by microRNAs. PLoS One 7(10):e48086. https://doi.org/10.1371/journal.pone.0048086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lulla RR, Costa FF, Bischof JM, Chou PM, de F Bonaldo M, Vanin EF, Soares MB (2011) Identification of Differentially Expressed MicroRNAs in Osteosarcoma. Sarcoma 2011:732690. https://doi.org/10.1155/2011/732690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang W, Zhou X, Wei M (2015) MicroRNA-144 suppresses osteosarcoma growth and metastasis by targeting ROCK1 and ROCK2. Oncotarget 6(12):10297–10308. 10.18632/oncotarget.3305

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shen L, Wang P, Yang J, Li X (2014) MicroRNA-217 regulates WASF3 expression and suppresses tumor growth and metastasis in osteosarcoma. PLoS One 9(10):e109138. https://doi.org/10.1371/journal.pone.0109138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Han K, Chen X, Bian N, Ma B, Yang T, Cai C, Fan Q, Zhou Y, Zhao TB (2015) MicroRNA profiling identifies MiR-195 suppresses osteosarcoma cell metastasis by targeting CCND1. Oncotarget 6 (11):8875-8889. doi:10.18632/oncotarget.3560

  37. Poos K, Smida J, Nathrath M, Maugg D, Baumhoer D, Korsching E (2013) How microRNA and transcription factor co-regulatory networks affect osteosarcoma cell proliferation. PLoS Comput Biol 9(8):e1003210. https://doi.org/10.1371/journal.pcbi.1003210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  39. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1(5):2315–2319. https://doi.org/10.1038/nprot.2006.339

    Article  CAS  PubMed  Google Scholar 

  40. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  Google Scholar 

  41. Zhang J, Yan YG, Wang C, Zhang SJ, Yu XH, Wang WJ (2015) MicroRNAs in osteosarcoma. Clin Chim Acta 444:9–17. https://doi.org/10.1016/j.cca.2015.01.025

    Article  CAS  PubMed  Google Scholar 

  42. Zhang HD, Jiang LH, Sun DW, Li J, Tang JH (2015) MiR-139-5p: promising biomarker for cancer. Tumour Biol 36(3):1355–1365. https://doi.org/10.1007/s13277-015-3199-3

    Article  CAS  PubMed  Google Scholar 

  43. Chen X, Shi K, Wang Y, Song M, Zhou W, Tu H, Lin Z (2015) Clinical value of integrated-signature miRNAs in colorectal cancer: miRNA expression profiling analysis and experimental validation. Oncotarget 6 (35):37544-37556. doi:10.18632/oncotarget.6065

  44. Liu X, Duan B, Dong Y, He C, Zhou H, Sheng H, Gao H, Zhang X (2014) MicroRNA-139-3p indicates a poor prognosis of colon cancer. Int J Clin Exp Pathol 7(11):8046–8052

    PubMed  PubMed Central  Google Scholar 

  45. Yonemori M, Seki N, Yoshino H, Matsushita R, Miyamoto K, Nakagawa M, Enokida H (2016) Dual tumor-suppressors miR-139-5p and miR-139-3p targeting matrix metalloprotease 11 in bladder cancer. Cancer Sci 107(9):1233–1242. https://doi.org/10.1111/cas.13002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ratert N, Meyer HA, Jung M, Lioudmer P, Mollenkopf HJ, Wagner I, Miller K, Kilic E, Erbersdobler A, Weikert S, Jung K (2013) miRNA profiling identifies candidate mirnas for bladder cancer diagnosis and clinical outcome. J Mol Diagn 15(5):695–705. https://doi.org/10.1016/j.jmoldx.2013.05.008

    Article  CAS  PubMed  Google Scholar 

  47. Wang Z, Ding Q, Li Y, Liu Q, Wu W, Wu L, Yu H (2016) Reanalysis of microRNA expression profiles identifies novel biomarkers for hepatocellular carcinoma prognosis. Tumour Biol. https://doi.org/10.1007/s13277-016-5369-3

  48. Haakensen VD, Nygaard V, Greger L, Aure MR, Fromm B, Bukholm IR, Lüders T, Chin SF, Git A, Caldas C, Kristensen VN, Brazma A, Børresen-Dale AL, Hovig E, Helland Å (2016) Subtype-specific micro-RNA expression signatures in breast cancer progression. Int J Cancer 139(5):1117–1128. https://doi.org/10.1002/ijc.30142

    Article  CAS  PubMed  Google Scholar 

  49. Rask L, Balslev E, Søkilde R, Høgdall E, Flyger H, Eriksen J, Litman T (2014) Differential expression of miR-139, miR-486 and miR-21 in breast cancer patients sub-classified according to lymph node status. Cell Oncol (Dordr) 37(3):215–227. https://doi.org/10.1007/s13402-014-0176-6

    Article  CAS  Google Scholar 

  50. Krishnan K, Steptoe AL, Martin HC, Pattabiraman DR, Nones K, Waddell N, Mariasegaram M, Simpson PT, Lakhani SR, Vlassov A, Grimmond SM, Cloonan N (2013) miR-139-5p is a regulator of metastatic pathways in breast cancer. RNA 19(12):1767–1780. https://doi.org/10.1261/rna.042143.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Qiu G, Lin Y, Zhang H, Wu D (2015) miR-139-5p inhibits epithelial-mesenchymal transition, migration and invasion of hepatocellular carcinoma cells by targeting ZEB1 and ZEB2. Biochem Biophys Res Commun 463(3):315–321. https://doi.org/10.1016/j.bbrc.2015.05.062

    Article  CAS  PubMed  Google Scholar 

  52. Yue S, Wang L, Zhang H, Min Y, Lou Y, Sun H, Jiang Y, Zhang W, Liang A, Guo Y, Chen P, Lv G, Zong Q, Li Y (2015) miR-139-5p suppresses cancer cell migration and invasion through targeting ZEB1 and ZEB2 in GBM. Tumour Biol 36(9):6741–6749. https://doi.org/10.1007/s13277-015-3372-8

    Article  CAS  PubMed  Google Scholar 

  53. Li Q, Liang X, Wang Y, Meng X, Xu Y, Cai S, Wang Z, Liu J, Cai G (2016) miR-139-5p Inhibits the Epithelial-Mesenchymal Transition and Enhances the Chemotherapeutic Sensitivity of Colorectal Cancer Cells by Downregulating BCL2. Sci Rep 6:27157. doi:https://doi.org/10.1038/srep27157

  54. Watanabe K, Amano Y, Ishikawa R, Sunohara M, Kage H, Ichinose J, Sano A, Nakajima J, Fukayama M, Yatomi Y, Nagase T, Ohishi N, Takai D (2015) Histone methylation-mediated silencing of miR-139 enhances invasion of non-small-cell lung cancer. Cancer Med 4(10):1573–1582. https://doi.org/10.1002/cam4.505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu Y, Uzair-Ur-Rehman GY, Liang H, Cheng R, Yang F, Hong Y, Zhao C, Liu M, Yu M, Zhou X, Yin K, Chen J, Zhang J, Zhang CY, Zhi F, Chen X (2016) miR-181b functions as an oncomiR in colorectal cancer by targeting PDCD4. Protein Cell 7(10):722–734. https://doi.org/10.1007/s13238-016-0313-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huang S, Wang J, Li J, Luo Q, Zhao M, Zheng L, Dong X, Chen C, Che Y, Liu P, Qi J, Huang C (2016) Serum microRNA expression profile as a diagnostic panel for gastric cancer. Jpn J Clin Oncol 46(9):811–818. https://doi.org/10.1093/jjco/hyw085

    Article  PubMed  Google Scholar 

  57. Zheng Y, Lv X, Wang X, Wang B, Shao X, Huang Y, Shi L, Chen Z, Huang J, Huang P (2016) MiR-181b promotes chemoresistance in breast cancer by regulating Bim expression. Oncol Rep 35(2):683–690. https://doi.org/10.3892/or.2015.4417

    Article  CAS  PubMed  Google Scholar 

  58. Sochor M, Basova P, Pesta M, Dusilkova N, Bartos J, Burda P, Pospisil V, Stopka T (2014) Oncogenic microRNAs: miR-155, miR-19a, miR-181b, and miR-24 enable monitoring of early breast cancer in serum. BMC Cancer 14:448. https://doi.org/10.1186/1471-2407-14-448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu J, Shi W, Wu C, Ju J, Jiang J (2014) miR-181b as a key regulator of the oncogenic process and its clinical implications in cancer (Review). Biomed Rep 2(1):7–11. https://doi.org/10.3892/br.2013.199

    Article  CAS  PubMed  Google Scholar 

  60. Cai B, An Y, Lv N, Chen J, Tu M, Sun J, Wu P, Wei J, Jiang K, Miao Y (2013) miRNA-181b increases the sensitivity of pancreatic ductal adenocarcinoma cells to gemcitabine in vitro and in nude mice by targeting BCL-2. Oncol Rep 29(5):1769–1776. https://doi.org/10.3892/or.2013.2297

    Article  CAS  PubMed  Google Scholar 

  61. Wang J, Sai K, Chen FR, Chen ZP (2013) miR-181b modulates glioma cell sensitivity to temozolomide by targeting MEK1. Cancer Chemother Pharmacol 72(1):147–158. https://doi.org/10.1007/s00280-013-2180-3

    Article  CAS  PubMed  Google Scholar 

  62. Wang X, Chen X, Meng Q, Jing H, Lu H, Yang Y, Cai L, Zhao Y (2015) MiR-181b regulates cisplatin chemosensitivity and metastasis by targeting TGFβR1/Smad signaling pathway in NSCLC. Sci Rep 5:17618. https://doi.org/10.1038/srep17618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shao JL, Li ZZ, Wang L, Jiao GL, Zhou ZG, Sun GD (2016) microRNA-181b promotes migration and invasion of osteosarcoma cells by targeting N-myc downstream regulated gene 2. Nan Fang Yi Ke Da Xue Xue Bao 36(3):321–326

    CAS  PubMed  Google Scholar 

  64. Nakajima G, Hayashi K, Xi Y, Kudo K, Uchida K, Takasaki K, Yamamoto M, Ju J (2006) Non-coding MicroRNAs hsa-let-7g and hsa-miR-181b are Associated with Chemoresponse to S-1 in Colon Cancer. Cancer Genomics Proteomics 3(5):317–324

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hu L, Ai J, Long H, Liu W, Wang X, Zuo Y, Li Y, Wu Q, Deng Y (2016) Integrative microRNA and gene profiling data analysis reveals novel biomarkers and mechanisms for lung cancer. Oncotarget 7 (8):8441-8454. doi:10.18632/oncotarget.7264

  66. Li X, Li D, Zhuang Y, Shi Q, Wei W, Ju X (2013) Overexpression of miR-708 and its targets in the childhood common precursor B-cell ALL. Pediatr Blood Cancer 60(12):2060–2067. https://doi.org/10.1002/pbc.24583

    Article  CAS  PubMed  Google Scholar 

  67. Li G, Yang F, Xu H, Yue Z, Fang X, Liu J (2015) MicroRNA-708 is downregulated in hepatocellular carcinoma and suppresses tumor invasion and migration. Biomed Pharmacother 73:154–159. https://doi.org/10.1016/j.biopha.2015.05.010

    Article  CAS  PubMed  Google Scholar 

  68. Lei SL, Zhao H, Yao HL, Chen Y, Lei ZD, Liu KJ, Yang Q (2014) Regulatory roles of microRNA-708 and microRNA-31 in proliferation, apoptosis and invasion of colorectal cancer cells. Oncol Lett 8(4):1768–1774. https://doi.org/10.3892/ol.2014.2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lin KT, Yeh YM, Chuang CM, Yang SY, Chang JW, Sun SP, Wang YS, Chao KC, Wang LH (2015) Glucocorticoids mediate induction of microRNA-708 to suppress ovarian cancer metastasis through targeting Rap1B. Nat Commun 6:5917. https://doi.org/10.1038/ncomms6917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ryu S, McDonnell K, Choi H, Gao D, Hahn M, Joshi N, Park SM, Catena R, Do Y, Brazin J, Vahdat LT, Silver RB, Mittal V (2013) Suppression of miRNA-708 by polycomb group promotes metastases by calcium-induced cell migration. Cancer Cell 23(1):63–76. https://doi.org/10.1016/j.ccr.2012.11.019

    Article  CAS  PubMed  Google Scholar 

  71. Saini S, Yamamura S, Majid S, Shahryari V, Hirata H, Tanaka Y, Dahiya R (2011) MicroRNA-708 induces apoptosis and suppresses tumorigenicity in renal cancer cells. Cancer Res 71(19):6208–6219. https://doi.org/10.1158/0008-5472.CAN-11-0073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yan W, Li R, Liu Y, Yang P, Wang Z, Zhang C, Bao Z, Zhang W, You Y, Jiang T (2014) MicroRNA expression patterns in the malignant progression of gliomas and a 5-microRNA signature for prognosis. Oncotarget 5(24):12908–12915. 10.18632/oncotarget.2679

    Article  PubMed  PubMed Central  Google Scholar 

  73. Xue H, Guo X, Han X, Yan S, Zhang J, Xu S, Li T, Zhang P, Gao X, Liu Q, Li G (2016) MicroRNA-584-3p, a novel tumor suppressor and prognostic marker, reduces the migration and invasion of human glioma cells by targeting hypoxia-induced ROCK1. Oncotarget 7(4):4785–4805. 10.18632/oncotarget.6735

    Article  PubMed  Google Scholar 

  74. Wang XP, Deng XL, Li LY (2014) MicroRNA-584 functions as a tumor suppressor and targets PTTG1IP in glioma. Int J Clin Exp Pathol 7(12):8573–8582

    PubMed  PubMed Central  Google Scholar 

  75. Guled M, Lahti L, Lindholm PM, Salmenkivi K, Bagwan I, Nicholson AG, Knuutila S (2009) CDKN2A, NF2, and JUN are dysregulated among other genes by miRNAs in malignant mesothelioma -A miRNA microarray analysis. Genes Chromosomes Cancer 48(7):615–623. https://doi.org/10.1002/gcc.20669

    Article  CAS  PubMed  Google Scholar 

  76. Gaedcke J, Grade M, Camps J, Søkilde R, Kaczkowski B, Schetter AJ, Difilippantonio MJ, Harris CC, Ghadimi BM, Møller S, Beissbarth T, Ried T, Litman T (2012) The rectal cancer microRNAome--microRNA expression in rectal cancer and matched normal mucosa. Clin Cancer Res 18(18):4919–4930. https://doi.org/10.1158/1078-0432.CCR-12-0016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ueno K, Hirata H, Shahryari V, Chen Y, Zaman MS, Singh K, Tabatabai ZL, Hinoda Y, Dahiya R (2011) Tumour suppressor microRNA-584 directly targets oncogene Rock-1 and decreases invasion ability in human clear cell renal cell carcinoma. Br J Cancer 104(2):308–315. https://doi.org/10.1038/sj.bjc.6606028

    Article  CAS  PubMed  Google Scholar 

  78. Xiang J, Wu Y, Li DS, Wang ZY, Shen Q, Sun TQ, Guan Q, Wang YJ (2015) miR-584 Suppresses Invasion and Cell Migration of Thyroid Carcinoma by Regulating the Target Oncogene ROCK1. Oncol Res Treat 38(9):436–440. https://doi.org/10.1159/000438967

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Brassesco.

Ethics declarations

Financial support

FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo): Grant 2014/03877-3 and LEAD fellowship 2014/07117-3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delsin, L.E.A., Roberto, G.M., Fedatto, P.F. et al. Downregulated Adhesion-Associated microRNAs as Prognostic Predictors in Childhood Osteosarcoma. Pathol. Oncol. Res. 25, 11–20 (2019). https://doi.org/10.1007/s12253-017-0316-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-017-0316-1

Keywords

Navigation