Advertisement

Pathology & Oncology Research

, Volume 24, Issue 3, pp 557–565 | Cite as

VEGFA Involves in the Use of Fluvastatin and Zoledronate Against Breast Cancer

  • Haihong Pu
  • Qingyuan ZhangEmail author
  • Chunbo Zhao
  • Lei Shi
  • Yan Wang
  • Jingxuan Wang
  • Minghui Zhang
Original Article
  • 155 Downloads

Abstract

Our study aimed to identify key genes involved in the use of fluvastatin and zoledronate against breast cancer, as well as to investigate the roles of vascular endothelial growth factor A (VEGFA) in the malignant behaviors of breast cancer cells. The expression data GSE33552 was downloaded from Gene Expression Omnibus database, including mocked-, fluvastatin- and zoledronate-treated MDA-MB-231 cells. Differentially expressed genes (DEGs) were identified in fluvastatin- and zoledronate-treated cells using limma package, respectively. Pathway enrichment analysis and protein-protein interaction (PPI) network analysis were then performed. Then we used shRNA specifically targeting VEGFA (shVEGFA) to knock down the expression of VEGFA in MDA-MB-231 cells. Cell viability assay, scratch wound healing assay, Transwell invasion assay and flow cytometry were performed to explore the effects of VEGFA knockdown on the malignant behaviors of breast cancer cells. VEGFA was up-regulated in both fluvastatin- and zoledronate-treated breast cancer cells. Moreover, VEGFA was a hub node in PPI network. In addition, VEGFA was successfully knocked down in MDA-MB-231 cells by shVEGFA. Suppression of VEGFA promoted the migration and invasion of breast cancer MDA-MB-231 cells. Suppression of VEGFA inhibited the apoptosis of MDA-MB-231 cells. Our results indicate that up-regulation of VEGFA may prevent the progression of breast cancer after fluvastatin and zoledronate treatment via inducing cell apoptosis and inhibiting migration and invasion. VEGFA may serve as a potential prognostic indicator for clinical outcome in the management of breast cancer.

Keywords

Fluvastatin Zoledronate Breast cancer Genes 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Stebbing J, Slater S, Slevin M (2006) Breast cancer (metastatic). Clin Evid 15:2331–2359Google Scholar
  2. 2.
    Group EBCTC (2015) Adjuvant bisphosphonate treatment in early breast cancer: meta-analyses of individual patient data from randomised trials. Lancet 386(10001):1353–1361CrossRefGoogle Scholar
  3. 3.
    Garwood ER, Kumar AS, Baehner FL, Moore DH, Au A, Hylton N, Flowers CI, Garber J, Lesnikoski B-A, Hwang ES (2010) Fluvastatin reduces proliferation and increases apoptosis in women with high grade breast cancer. Breast Cancer Res Treat 119(1):137–144CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kotamraju S, Willams CL, Kalyanaraman B (2007) Statin-induced breast cancer cell death: role of inducible nitric oxide and arginase-dependent pathways. Cancer Res 67(15):7386–7394CrossRefPubMedGoogle Scholar
  5. 5.
    Kanugula AK, Gollavilli PN, Vasamsetti SB, Karnewar S, Gopoju R, Ummanni R, Kotamraju S (2014) Statin-induced inhibition of breast cancer proliferation and invasion involves attenuation of iron transport: intermediacy of nitric oxide and antioxidant defence mechanisms. FEBS J 281(16):3719–3738CrossRefPubMedGoogle Scholar
  6. 6.
    Senaratne S, Pirianov G, Mansi J, Arnett T, Colston K (2000) Bisphosphonates induce apoptosis in human breast cancer cell lines. Br J Cancer 82(8):1459CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dedes P, Gialeli C, Tsonis A, Kanakis I, Theocharis A, Kletsas D, Tzanakakis G, Karamanos N (2012) Expression of matrix macromolecules and functional properties of breast cancer cells are modulated by the bisphosphonate zoledronic acid. Biochim Biophys Acta 1820(12):1926–1939CrossRefPubMedGoogle Scholar
  8. 8.
    Furriol J, Puntervoll HE, Knutsvik G, Mannelqvist M, Aziz S, Wik E, Akslen LA (2015) Associations between VEGF polymorphisms and clinical outcome in breast cancer. Cancer Res 75(15 Supplement):135–135CrossRefGoogle Scholar
  9. 9.
    Croset M, Goehrig D, Frackowiak A, Bonnelye E, Ansieau S, Puisieux A, Clézardin P (2014) TWIST1 expression in breast cancer cells facilitates bone metastasis formation. J Bone Miner Res 29(8):1886–1899CrossRefPubMedGoogle Scholar
  10. 10.
    Vintonenko N, Jais J-P, Kassis N, Abdelkarim M, Perret G-Y, Lecouvey M, Crepin M, Di Benedetto M (2012) Transcriptome analysis and in vivo activity of fluvastatin versus zoledronic acid in a murine breast cancer metastasis model. Mol Pharmacol 82(3):521–528CrossRefPubMedGoogle Scholar
  11. 11.
    Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) Affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20(3):307–315CrossRefPubMedGoogle Scholar
  12. 12.
    Smyth GK (2005) Limma: linear models for microarray data. In: Bioinformatics and computational biology solutions using R and Bioconductor. Springer, pp 397–420Google Scholar
  13. 13.
    Li C, Li X, Miao Y, Wang Q, Jiang W, Xu C, Li J, Han J, Zhang F, Gong B (2009) SubpathwayMiner: a software package for flexible identification of pathways. Nucleic Acids Res 37(19):e131–e131CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kanehisa M (2002) The KEGG database. Novartis Found Symp 247:91–101 discussion 101–103, 119–128, 244–152CrossRefPubMedGoogle Scholar
  15. 15.
    Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C (2013) STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41(D1):D808–D815CrossRefPubMedGoogle Scholar
  16. 16.
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cory G (2011) Scratch-wound assay. Cell Migration. Springer, In, pp 25–30Google Scholar
  18. 18.
    Rydén L, Linderholm B, Nielsen NH, Emdin S, Jönsson P-E, Landberg G (2003) Tumor specific VEGF-A and VEGFR2/KDR protein are co-expressed in breast cancer. Breast Cancer Res Treat 82(3):147–154CrossRefPubMedGoogle Scholar
  19. 19.
    Oommen S, Gupta SK, Vlahakis NE (2011) Vascular endothelial growth factor a (VEGF-A) induces endothelial and cancer cell migration through direct binding to integrin α9β1 identification of a specific α9β1 binding site. J Biol Chem 286(2):1083–1092CrossRefPubMedGoogle Scholar
  20. 20.
    Yin YP, Wei WH, Wang HC, Zhu BY, Yu YH, Chen XS, Peeling RW, Cohen MS (2009) Performance of serological tests for syphilis in sexually transmitted diseases clinics in Guangxi Autonomous Region, China: implications for syphilis surveillance and control. Sex Health 6(1):5–9CrossRefPubMedGoogle Scholar
  21. 21.
    Eun YG, Lee YC, Lee J-W (2015) A polymorphism of VEGFA is associated with susceptibility to extrathyroidal invasion of papillary thyroid cancer. Cancer Res 75(15 Supplement):5280–5280CrossRefGoogle Scholar
  22. 22.
    Gong J, Zhu S, Zhang Y, Wang J (2014) Interplay of VEGFa and MMP2 regulates invasion of glioblastoma. Tumor Biol 35(12):11879–11885CrossRefGoogle Scholar
  23. 23.
    Chen L, Xiao H, Wang Z-H, Huang Y, Liu Z-P, Ren H, Song H (2014) miR-29a suppresses growth and invasion of gastric cancer cells in vitro by targeting VEGF-A. BMB Rep 47(1):39–44CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gu A, Lu J, Wang W, Shi C, Han B, Yao M (2016) Role of miR-497 in VEGF-A-mediated cancer cell growth and invasion in non-small cell lung cancer. Int J Biochem Cell Biol 70:118–125CrossRefPubMedGoogle Scholar
  25. 25.
    Whitehurst B, Flister MJ, Bagaitkar J, Volk L, Bivens CM, Pickett B, Castro-Rivera E, Brekken RA, Gerard RD, Ran S (2007) Anti-VEGF-A therapy reduces lymphatic vessel density and expression of VEGFR-3 in an orthotopic breast tumor model. Int J Cancer 121(10):2181–2191CrossRefPubMedGoogle Scholar
  26. 26.
    Rydén L, Stendahl M, Jonsson H, Emdin S, Bengtsson NO, Landberg G (2005) Tumor-specific VEGF-A and VEGFR2 in postmenopausal breast cancer patients with long-term follow-up. Implication of a link between VEGF pathway and tamoxifen response. Breast Cancer Res Treat 89(2):135–143CrossRefPubMedGoogle Scholar
  27. 27.
    Bai X, Geng J, Li X, Yang F, Tian J (2015) VEGF-A inhibition ameliorates podocyte apoptosis via repression of activating protein 1 in diabetes. Am J Nephrol 40(6):523–534. doi: 10.1159/000369942 CrossRefGoogle Scholar
  28. 28.
    Zelzer E, Mamluk R, Ferrara N, Johnson RS, Schipani E, Olsen BR (2004) VEGFA is necessary for chondrocyte survival during bone development. Development 131(9):2161–2171CrossRefPubMedGoogle Scholar
  29. 29.
    Balasubramanian SP, Cox A, Cross SS, Higham SE, Brown NJ, Reed MW (2007) Influence of VEGF-A gene variation and protein levels in breast cancer susceptibility and severity. Int J Cancer 121(5):1009–1016CrossRefPubMedGoogle Scholar
  30. 30.
    Ma X, Shen D, Li H, Zhang Y, Lv X, Huang Q, Gao Y, Li X, Gu L, Xiu S (2015) MicroRNA-185 inhibits cell proliferation and induces cell apoptosis by targeting VEGFA directly in von Hippel-Lindau–inactivated clear cell renal cell carcinoma. In: Urologic Oncology: Seminars and Original Investigations. Elsevier, pp 169. e161–169. e111Google Scholar

Copyright information

© Arányi Lajos Foundation 2017

Authors and Affiliations

  • Haihong Pu
    • 1
  • Qingyuan Zhang
    • 1
    Email author
  • Chunbo Zhao
    • 2
  • Lei Shi
    • 3
  • Yan Wang
    • 1
  • Jingxuan Wang
    • 1
  • Minghui Zhang
    • 1
  1. 1.Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
  2. 2.Department of Radiation OncologyHarbin Medical University Cancer HospitalHarbinChina
  3. 3.Department of Radiation OncologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina

Personalised recommendations