Advertisement

Pathology & Oncology Research

, Volume 24, Issue 3, pp 547–555 | Cite as

Clinicopathological Significance of Micropapillary Pattern in Lung Adenocarcinoma

  • Jung-Soo Pyo
  • Joo Heon KimEmail author
Original Article

Abstract

The aim of this study was to elucidate the clinicopathological characteristics of the micropapillary (MP) subtype and its correlation with survival in lung adenocarcinoma. We investigated the clinicopathological characteristics, including the incidence, sex, smoking history, tumor size, lymph node metastasis, lymphovascular invasion, distant metastasis, genetic alteration, and prognosis in lung adenocarcinoma with the MP pattern through a meta-analysis. From 48 eligible studies, 19,502 lung adenocarcinomas were included. The incidence rate of the MP pattern was 0.101 [95% confidence interval (CI) 0.075–0.136]. There was no significant difference between stage I and III tumors. Lung adenocarcinoma with the MP pattern showed higher rates of lymphatic invasion (0.526, 95% CI 0.403–0.645). MP pattern was found in 0.150 (95% CI 0.008–0.790) of lung adenocarcinoma with distant metastasis. In lung adenocarcinoma with the MP pattern, the estimated rates of ALK, EGFR, and KRAS mutations were 0.102 (95% CI 0.027–0.322), 0.620 (95% CI 0.444–0.769), and 0.118 (95% CI 0.027–0.393), respectively. The MP pattern of lung adenocarcinoma was significantly correlated with worse overall and disease-free survival rates (hazard ratio 1.704, 95% CI 1.216–2.387, and 2.082, 95% CI 1.541–2.813, respectively). Taken together, identification of the MP pattern in lung adenocarcinoma is useful for prediction of clinicopathological characteristics and prognosis of patients.

Keywords

Lung adenocarcinoma Micropapillary pattern Clinicopathological characteristics Meta-analysis 

Abbreviations

MP

Micropapillary

ALK

anaplastic lymphoma kinase

HR

Hazard ratio

CI

Confidence interval

Notes

Compliance with Ethical Standards

Funding

None.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Travis WD, Brambilla E, Burke AP, Marx A, Nicholson AG (2015) WHO classification of tumours of the lung, pleura, thymus and heart, 4th edn. International Agency for Research on Cancer, LyonGoogle Scholar
  2. 2.
    Travis WD, Brambilla E, Nicholson AG et al (2015) The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol 10:1243–1260CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Yap TA, Gerlinger M, Futreal PA, Pusztai L, Swanton C (2012) Intratumor heterogeneity: seeing the wood for the trees. Sci Transl Med 4:127ps10CrossRefPubMedGoogle Scholar
  4. 4.
    Yoshizawa A, Motoi N, Riely GJ, Sima CS, Gerald WL, Kris MG et al (2011) Impact of proposed IASLC/ATS/ERS classification of lung adenocarcinoma: prognostic subgroups and implications for further revision of staging basedon analysis of 514 stage I cases. Mod Pathol 24:653–664CrossRefPubMedGoogle Scholar
  5. 5.
    Russell PA, Wainer Z, Wright GM, Daniels M, Conron M, Williams RA (2011) Does lung adenocarcinoma subtype predict patient survival?: aclinicopathologic study based on the new international Association for theStudy of lung cancer/American Thoracic Society/European RespiratorySociety international multidisciplinary lung adenocarcinoma classification. J Thorac Oncol 6:1496–1504CrossRefPubMedGoogle Scholar
  6. 6.
    Warth A, Muley T, Meister M et al (2012) The novel histologic International Association for the Study of LungCancer/American Thoracic Society/European Respiratory Society classificationsystem of lung adenocarcinoma is a stage-independent predictor of survival. J Clin Oncol 30:1438–1446CrossRefPubMedGoogle Scholar
  7. 7.
    Cai YR, Dong YJ, Wu HB et al (2016) Micropapillary: a component more likely to harbour heterogeneous EGFR mutations in lung adenocarcinomas. Sci Rep 6:23755CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Amin MB, Tamboli P, Merchant SH et al (2002) Micropapillary component in lung adenocarcinoma: a distinctive histologic feature with possible prognostic significance. Am J Surg Pathol 26:358–364CrossRefPubMedGoogle Scholar
  9. 9.
    Sánchez-Mora N, Presmanes MC, Monroy V et al (2008) Micropapillary lung adenocarcinoma: a distinctive histologic subtype with prognostic significance. Case series. Hum Pathol 39:324–330CrossRefPubMedGoogle Scholar
  10. 10.
    Makimoto Y, Nabeshima K, Iwasaki H et al (2005) Micropapillary pattern: a distinct pathological marker to subclassify tumours with a significantly poor prognosis within small peripheral lung adenocarcinoma (</=20 mm) with mixed bronchioloalveolar and invasive subtypes (Noguchi's type C tumours). Histopathology 46:677–684CrossRefPubMedGoogle Scholar
  11. 11.
    Miyoshi T, Satoh Y, Okumura S et al (2003) Early-stage lung adenocarcinomas with a micropapillary pattern, a distinct pathologic marker for a significantly poor prognosis. Am J Surg Pathol 27:101–109CrossRefPubMedGoogle Scholar
  12. 12.
    Motoi N, Szoke J, Riely GJ et al (2008) Lung adenocarcinoma: modification of the 2004 WHO mixed subtype to include the major histologic subtype suggests correlations between papillary and micropapillary adenocarcinoma subtypes, EGFR mutations and gene expression analysis. Am J Surg Pathol 32:810–827CrossRefPubMedGoogle Scholar
  13. 13.
    Roh MS, Lee JI, Choi PJ, Hong YS (2004) Relationship between micropapillary component and micrometastasis in the regional lymph nodes of patients with stage I lung adenocarcinoma. Histopathology 45:580–586CrossRefPubMedGoogle Scholar
  14. 14.
    Furukawa M, Toyooka S, Ichimura K et al (2016) Genetic alterations in lung adenocarcinoma with a micropapillary component. Mol Clin Oncol 4:195–200CrossRefPubMedGoogle Scholar
  15. 15.
    Bao F, Yuan P, Yuan X, Lv X, Wang Z, Hu J (2014) Redictive risk factors for lymph node metastasis in patients with small size non-small cell lung cancer. J Thorac Dis 6:1697–1703PubMedPubMedCentralGoogle Scholar
  16. 16.
    Cha MJ, Lee HY, Lee KS et al (2014) Micropapillary and solid subtypes of invasive lung adenocarcinoma: clinical predictors of histopathology and outcome. J Thorac Cardiovasc Surg 147:921–928.e2CrossRefPubMedGoogle Scholar
  17. 17.
    Gu J, Lu C, Guo J et al (2013) Prognostic significance of the IASLC/ATS/ERS classification in Chinese patients-a single institution retrospective study of 292 lung adenocarcinoma. J Surg Oncol 107:474–480CrossRefPubMedGoogle Scholar
  18. 18.
    Hirano H, Maeda H, Takeuchi Y et al (2014) Lymphatic invasion of micropapillary cancer cells is associated with a poor prognosis of pathological stage IA lung adenocarcinomas. Oncol Lett 8:1107–1111CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hung JJ, Jeng WJ, Wu YC, Chou TY, Hsu WH (2016) Factors predicting organ-specific distant metastasis in patients with completely resected lung adenocarcinoma. Oncotarget 7:58261–58273PubMedPubMedCentralGoogle Scholar
  20. 20.
    Kadota K, Nitadori J, Sarkaria IS et al (2013) Thyroid transcription factor-1 expression is an independent predictor of recurrence and correlates with the IASLC/ATS/ERS histologic classification in patients with stage I lung adenocarcinoma. Cancer 119:931–938CrossRefPubMedGoogle Scholar
  21. 21.
    Kamiya K, Hayashi Y, Douguchi J et al (2008) Histopathological features and prognostic significance of the micropapillary pattern in lung adenocarcinoma. Mod Pathol 21:992–1001CrossRefPubMedGoogle Scholar
  22. 22.
    Kawakami T, Nabeshima K, Makimoto Y et al (2007) Micropapillary pattern and grade of stromal invasion in pT1 adenocarcinoma of the lung: usefulness as prognostic factors. Mod Pathol 20:514–521CrossRefPubMedGoogle Scholar
  23. 23.
    Kawakami T, Nabeshima K, Hamasaki M, Iwasaki A, Shirakusa T, Iwasaki H (2009) Small cluster invasion: a possible link between micropapillary pattern and lymph node metastasis in pT1 lung adenocarcinomas. Virchows Arch 454:61–70CrossRefPubMedGoogle Scholar
  24. 24.
    Koga K, Hamasaki M, Kato F et al (2013) Association of c-met phosphorylation with micropapillary pattern and small cluster invasion in pT1-size lung adenocarcinoma. Lung Cancer 82:413–419CrossRefPubMedGoogle Scholar
  25. 25.
    Lee G, Lee HY, Jeong JY et al (2015) Clinical impact of minimal micropapillary pattern in invasive lung adenocarcinoma: prognostic significance and survival outcomes. Am J Surg Pathol 39:660–666CrossRefPubMedGoogle Scholar
  26. 26.
    Li H, Pan Y, Li Y et al (2013) Frequency of well-identified oncogenic driver mutations in lung adenocarcinoma of smokers varies with histological subtypes and graduated smoking dose. Lung Cancer 79:8–13CrossRefPubMedGoogle Scholar
  27. 27.
    Lu F, Li S, Dong B, Zhang S, Lv C, Yang Y (2016) Identification of lung adenocarcinoma mutation status based on histologic subtype: retrospective analysis of 269 patients. Thorac Cancer 7:17–23CrossRefPubMedGoogle Scholar
  28. 28.
    Luo J, Huang Q, Wang R et al (2016) Prognostic and predictive value of the novel classification of lung adenocarcinoma in patients with stage IB. J Cancer Res Clin Oncol 142:2031–2040CrossRefPubMedGoogle Scholar
  29. 29.
    Maeda R, Isowa N, Onuma H et al (2009) Lung adenocarcinomas with micropapillary components. Gen Thorac Cardiovasc Surg 57:534–539CrossRefPubMedGoogle Scholar
  30. 30.
    Mäkinen JM, Laitakari K, Johnson S et al (2015) Nonpredominant lepidic pattern correlates with better outcome in invasive lung adenocarcinoma. Lung Cancer 90:568–574CrossRefPubMedGoogle Scholar
  31. 31.
    Ninomiya H, Hiramatsu M, Inamura K et al (2009) Orrelation between morphology and EGFR mutations in lung adenocarcinomas significance of the micropapillary pattern and the hobnail cell type. Lung Cancer 63:235–240CrossRefPubMedGoogle Scholar
  32. 32.
    Nishino M, Klepeis VE, Yeap BY et al (2012) Istologic and cytomorphologic features of ALK-rearranged lung adenocarcinomas. Mod Pathol 25:1462–1472CrossRefPubMedGoogle Scholar
  33. 33.
    Nitadori J, Bograd AJ, Kadota K et al (2013) Impact of micropapillary histologic subtype in selecting limited resection vs lobectomy for lung adenocarcinoma of 2cm or smaller. J Natl Cancer Inst 105:1212–1220CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ohe M, Yokose T, Sakuma Y et al (2012) Stromal micropapillary component as a novel unfavorable prognostic factor of lung adenocarcinoma. Diagn Pathol 7:3CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Onozato ML, Kovach AE, Yeap BY et al (2013) Tumor islands in resected early-stage lung adenocarcinomas are associated with unique clinicopathologic and molecular characteristics and worse prognosis. Am J Surg Pathol 37:287–294CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Russell PA, Barnett SA, Walkiewicz M et al (2013) Orrelation of mutation status and survival with predominant histologic subtype according to the new IASLC/ATS/ERS lung adenocarcinoma classification in stage III (N2) patients. J Thorac Oncol 8:461–468CrossRefPubMedGoogle Scholar
  37. 37.
    Song Z, Zhu H, Guo Z, Wu W, Sun W, Zhang Y (2013) Correlation of EGFR mutation and predominant histologic subtype according to the new lung adenocarcinoma classification in Chinese patients. Med Oncol 30:645CrossRefPubMedGoogle Scholar
  38. 38.
    Sumiyoshi S, Yoshizawa A, Sonobe M et al (2013) Pulmonary adenocarcinomas with micropapillary component significantly correlate with recurrence, but can be well controlled with EGFR tyrosine kinase inhibitors in the early stages. Lung Cancer 81:53–59CrossRefPubMedGoogle Scholar
  39. 39.
    Sun Y, Yu X, Shi X, Hong W, Zhao J, Shi L (2014) Correlation of survival and EGFR mutation with predominant histologic subtype according to the new lung adenocarcinoma classification in stage IB patients. World J Surg Oncol 12:148CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Tsutsumida H, Nomoto M, Goto M et al (2007) A micropapillary pattern is predictive of a poor prognosis in lung adenocarcinoma, and reduced surfactant apoprotein a expression in the micropapillary pattern is an excellent indicator of a poor prognosis. Mod Pathol 20:638–647CrossRefPubMedGoogle Scholar
  41. 41.
    Wang L, Jiang W, Zhan C et al (2015) Lymph node metastasis in clinical stage IA peripheral lung cancer. Lung Cancer 90:41–46CrossRefPubMedGoogle Scholar
  42. 42.
    Warth A, Penzel R, Lindenmaier H et al (2014) EGFR, KRAS, BRAF and ALK gene alterations in lung adenocarcinomas: patient outcome, interplay with morphology and immunophenotype. Eur Respir J 43:872–883CrossRefPubMedGoogle Scholar
  43. 43.
    Yanagawa N, Shiono S, Abiko M, Katahira M, Osakabe M, Ogata SY (2016) The clinical impact of solid and Micropapillary patterns in resected lung adenocarcinoma. J Thorac Oncol 11:1976–1983CrossRefPubMedGoogle Scholar
  44. 44.
    Yang F, Chen K, Liao Y et al (2014) Risk factors of recurrence for resected T1aN0M0 invasive lung adenocarcinoma: a clinicopathologic study of 177 patients. World J Surg Oncol 12:285CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Yang X, Liu Y, Lian F et al (2014) Lepidic and micropapillary growth pattern and expression of Napsin a can stratify patients of stage I lung adenocarcinoma into different prognostic subgroup. Int J Clin Exp Pathol 7:1459–1468PubMedPubMedCentralGoogle Scholar
  46. 46.
    Ye B, Cheng M, Li W et al (2014) Predictive factors for lymph node metastasis in clinical stage IA lung adenocarcinoma. Ann Thorac Surg 98:217–223CrossRefPubMedGoogle Scholar
  47. 47.
    Yeh YC, Wu YC, Chen CY, Wang LS, Hsu WH, Chou TY (2012) Stromal invasion and micropapillary pattern in 212 consecutive surgically resected stage I lung adenocarcinomas: histopathological categories for prognosis prediction. J Clin Pathol 65:910–918CrossRefPubMedGoogle Scholar
  48. 48.
    Yoshiya T, Mimae T, Tsutani Y et al (2016) Prognostic role of subtype classification in small-sized pathologic N0 invasive lung adenocarcinoma. Ann Thorac Surg 102:1668–1673CrossRefPubMedGoogle Scholar
  49. 49.
    Yu Y, Ding Z, Jian H, Shen L, Zhu L, Lu S (2016) Prognostic value of MMP9 activity level in resected stage I B lung adenocarcinoma. Cancer Med 5:2323–2331CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Yu Y, Ding Z, Zhu L, Teng H, Lu S (2016) Frequencies of ALK rearrangements in lung adenocarcinoma subtypes: a study of 2299 Chinese cases. Spring 5:894CrossRefGoogle Scholar
  51. 51.
    Zhang J, Liang Z, Gao J, Luo Y, Liu T (2011) Pulmonary adenocarcinoma with a micropapillary pattern: a clinicopathological, immunophenotypic and molecular analysis. Histopathology 59:1204–1214CrossRefPubMedGoogle Scholar
  52. 52.
    Zhang Y, Wang R, Cai D et al (2014) A comprehensive investigation of molecular features and prognosis of lung adenocarcinoma with micropapillary component. J Thorac Oncol 9:1772–1778CrossRefPubMedGoogle Scholar
  53. 53.
    Zhang Y, Sun Y, Xiang J, Zhang Y, Hu H, Chen H (2014) A clinicopathologic prediction model for postoperative recurrence in stage Ia non-small cell lung cancer. J Thorac Cardiovasc Surg 148:1193–1199CrossRefPubMedGoogle Scholar
  54. 54.
    Zhao Y, Wang R, Shen X et al (2016) Minor components of Micropapillary and solid subtypes in lung adenocarcinoma are predictors of lymph node metastasis and poor prognosis. Ann Surg Oncol 23:2099–2105CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Zhao ZR, Xi SY, Li W et al (2015) Prognostic impact of pattern-based grading system by the new IASLC/ATS/ERS classification in Asian patients with stage I lung adenocarcinoma. Lung Cancer 90:604–609CrossRefPubMedGoogle Scholar
  56. 56.
    Parmar MK, Torri V (1998) Stewart L (1998) extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med 17:2815–2834CrossRefPubMedGoogle Scholar
  57. 57.
    Yusuf S, Peto R, Lewis J, Collins R, Sleight P (1985) Beta blockade during and after myocardial infarction: an overview of the randomized trials. Prog Cardiovasc Dis 27:335–371CrossRefPubMedGoogle Scholar
  58. 58.
    Yanagawa N, Shiono S, Abiko M et al (2014) The correlation of the International Association for the Study of Lung Cancer (IASLC)/American Thoracic Society (ATS)/European Respiratory Society (ERS) classification with prognosis and EGFR mutation in lung adenocarcinoma. Ann Thorac Surg 98:453–458CrossRefPubMedGoogle Scholar
  59. 59.
    De Oliveira Duarte Achcar R, Nikiforova MN, Yousem SA (2009) Micropapillary lung adenocarcinoma: EGFR, K-ras, and BRAF mutational profile. Am J Clin Pathol 131:694–700CrossRefPubMedGoogle Scholar
  60. 60.
    Tsao MS, Marguet S, Le Teuff G et al (2015) Subtype classification of lung adenocarcinoma predicts benefit from adjuvant chemotherapy in patients undergoing complete resection. J Clin Oncol 33:3439–3446CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2017

Authors and Affiliations

  1. 1.Department of PathologyEulji University Hospital, Eulji University School of Medicine, Daejeon, Republic of KoreaDaejeonRepublic of Korea

Personalised recommendations