Advertisement

Pathology & Oncology Research

, Volume 24, Issue 3, pp 489–496 | Cite as

Single-Nucleotide Polymorphisms of the MSH2 and MLH1 Genes, Potential Molecular Markers for Susceptibility to the Development of Basal Cell Carcinoma in the Brazilian Population

  • Poliane da Silva Calixto
  • Otávio Sérgio Lopes
  • Mayara dos Santos Maia
  • Sylvia Satomi Takeno Herrero
  • Carlos Alberto Longui
  • Cynthia Germoglio Farias Melo
  • Ivan Rodrigues de Carvalho Filho
  • Leonardo Ferreira Soares
  • Arnaldo Correia de Medeiros
  • Plínio Delatorre
  • André Salim khayat
  • Rommel Rodriguez Burbano
  • Eleonidas Moura LimaEmail author
Original Article

Abstract

Basal cell carcinoma - BCC is considered a multifactorial neoplasm involving genetic, epigenetic and environmental factors. Where UVB radiation is considered the main physical agent involved in BCC carcinogenesis. The Brazil and state of Paraíba are exposed to high levels of UVB rays. The mismatch repair - MMR is important DNA repair mechanisms to maintain replication fidelity. Therefore, single nucleotide polymorphisms (SNPs) in genes encoding proteins involved in MMR may be potential molecular markers of susceptibility to BCC. The objective of this study was to evaluate and describe for the first time the SNPs rs560246973, rs2303425 and rs565410865 and risk of developing BCC. The present study analyzed 100 samples of paraffin-embedded tissue from patients with histopathological diagnosis of BCC and 100 control samples. The results were obtained by genotyping method, Dideoxy Unique Allele Specific – PCR (DSASP). The SNPs rs2303425 were not associated with Basal Cell Carcinoma. However, the SNPs rs560246973 and rs565410865 was shown to be associated with the development of BCC when compared to control samples (P < 0.0001). The SNPs rs565410865 was also statistical significance between the genotypes of and the age group (p = 0.0027) and tumor location (p = 0,0191). The result suggests that SNPs rs2303425 and rs565410865 are associated with susceptibility to the development of BCC in the Brazilian population and may be considered as potential molecular markers for BCC.

Keywords

Basal cell carcinoma Mismatch repair Single nucleotide polymorphism DSASP Genotyping Molecular markers 

Notes

Acknowledgements

The authors would like to thank Jimmy Johnson for proofreading the article.

Compliance with Ethical Standards

Conflict of Interest

None.

Funding

This work was supported by grants of CAPES, CNPq and Clinica Dermatológica Santa Catarina; João Pessoa - PB – Brasil.

Ethical Approval

The present study is part of the thematic project approved by the Ethics Committee of the University Hospital Lauro Wanderley - UFPB under the code CAAE: 36,522,614.2.3001.5883.

References

  1. 1.
    Nikolaou V, Stratigos AJ, Tsao H (2012) Hereditary Nonmelanoma skin cancer. Semin Cutan Med Surg 31:204–210CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    DePry JL, Reed KB, Cook-Norris RH et al (2011) Iatrogenic immunosuppression and cutaneous malignancy. Clin Dermatol 29:602–613CrossRefPubMedGoogle Scholar
  3. 3.
    Lichter MD, Karagas MR, Mott LA et al (2000) Therapeutic ionizing radiation and the incidence of basal cell carcinoma and squamous cell carcinoma. Arch Dermatol 136:1007–1011CrossRefPubMedGoogle Scholar
  4. 4.
    Noubissi FK, Kim T, Kawahara TN et al (2014) Role of CRD-BP in the growth of human basal cell carcinoma cells. J Investig Dermatol 134:1718–1724CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zink BS (2014) Câncer de pele: a importância do seu diagnóstico, tratamento e prevenção Revista HUPE 13:76–83Google Scholar
  6. 6.
    Kim S, Misra A (2007) SNP genotyping: technologies and biomedical applications. Annu Rev Biomed Eng 9:289–320CrossRefPubMedGoogle Scholar
  7. 7.
    Dizdaroglu M (2015) Oxidatively induced DNA damage and its repair in cancer. Mutat Res 763:212–245CrossRefGoogle Scholar
  8. 8.
    Erie DA, Weninger KR (2014) Single molecule studies of DNA mismatch repair. DNA repair 20:71–81CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Mjelle R, Hegre SA, Aas PA et al (2015) Cell cycle regulation of human DNA repair and chromatin remodeling genes. DNA repair 30:53–67CrossRefPubMedGoogle Scholar
  10. 10.
    Reyes GX, Schmidt TT, Kolodner RD et al (2015) New insights into the mechanism of DNA mismatch repair. Chromosoma. doi: 10.1007/s00412-015-0514-0
  11. 11.
    Smith CE, Mendillo ML, Bowen N et al (2013) Dominant mutations in S. cerevisiae PMS1 identify the Mlh1-Pms1 endonuclease active site and an exonuclease 1-independent mismatch repair pathway. PLoS Genet. doi: 10.1371/journal.pgen.1003869
  12. 12.
    Stojic L, Brun R, Jiricny J (2004) Mismatch repair and DNA damage signalling. DNA Repair 3:1091–1101CrossRefPubMedGoogle Scholar
  13. 13.
    Han HJ, Maruyama M, Baba S et al (1995) Genomic structure of human mismatch repair gene, hMLH1, and its mutation analysis in patients with hereditary non-polyposis colorectal cancer (HNPCC). Hum Mol Genet 4:237–242CrossRefPubMedGoogle Scholar
  14. 14.
    Fukuhara S, Chang I, Mitsui Y et al (2014) DNA mismatch repair gene MLH1 induces apoptosis in prostate cancer cells. Oncotarget 5:11297–11307CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fishel R, Lescoe MK, Rao MR et al (1993) The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75:1027–1038CrossRefPubMedGoogle Scholar
  16. 16.
    Kolodner RD, Hall NR, Lipford J et al (1994) Structure of the human MSH2 locus and analysis of two Muir-Torre kindreds for msh2 mutations. Genomics 24:516–526CrossRefPubMedGoogle Scholar
  17. 17.
    Xiao XQ, Gong WD, Wang SZ et al (2012) Polymorphisms of mismatch repair gene hMLH1 and hMSH2 and risk of gastric cancer in a Chinese population. Oncol Lett 3:591–598CrossRefPubMedGoogle Scholar
  18. 18.
    Sun MZ, Ju HX, Zhou ZW et al (2014) Single nucleotide polymorphisms of DNA mismatch repair genes MSH2 and MLH1 confer susceptibility to esophageal cancer. Int J Clin Exp Med 7:2329–2333PubMedPubMedCentralGoogle Scholar
  19. 19.
    Smith TR, Levine EA, Freimanis RI et al (2008) Polygenic model of DNA repair genetic polymorphisms in human breast cancer risk. Carcinogenesis. doi: 10.1093/carcin/bgn193
  20. 20.
    Mrkonjic M, Raptis S, Green RC et al (2007) MSH2− 118T> C and MSH6− 159C> T promoter polymorphisms and the risk of colorectal cancer. Carcinogenesis 28:2575–2580CrossRefPubMedGoogle Scholar
  21. 21.
    Slováková P, Majerová L, Matáková T et al (2015) Mismatch repair Gene polymorphisms and association with lung cancer development. In: lung cancer and autoimmune disorders. Adv Exp Med Biol 833:15–22CrossRefPubMedGoogle Scholar
  22. 22.
    Nishi R, Okuda Y, Watanabe E et al (2005) Centrin 2 stimulates nucleotide excision repair by interacting with Xeroderma Pigmentosum group C protein. Mol Cell Biol. doi: 10.1128/MCB.25.13.5664-5674
  23. 23.
    Lima EM, Lopes OS, Soares LF et al (2015) Dideoxy single allele-specific PCR - DSASP new method to discrimination allelic. Braz Arch Biol Technol 58:414–420CrossRefGoogle Scholar
  24. 24.
    Birch-Johansen F, Jensen A, Mortensen L et al (2010) Trends in the incidence of nonmelanoma skin cancer in Denmark 1978–2007: rapid incidence increase among young Danish women. Int J Cancer. doi: 10.1002/ijc.25411
  25. 25.
    Smolarz B, Makowska M, Samulak D et al (2015) Gly322Asp and Asn127Ser single nucleotide polymorphisms (SNPs) of hMSH2 mismatch repair gene and the risk of triple-negative breast cancer in polish women. Familial Cancer. doi: 10.1007/s10689-014-9746-z
  26. 26.
    Srivastava K, Srivastava A, Mittal B (2010) Polymorphisms in ERCC2, MSH2, and OGG1 DNA repair genes and gallbladder cancer risk in a population of northern India. Cancer 116:3160–3169CrossRefPubMedGoogle Scholar
  27. 27.
    Hsieh YC, Cho EC, Tu SH et al (2017) MSH2 rs2303425 polymorphism is associated with early-onset breast cancer in Taiwan. Ann Surg Oncol. doi: 10.1245/s10434-016-5168-5
  28. 28.
    Dahlman-Wright K, Qiao Y, Jonsson P et al (2012) Interplay between AP-1 and estrogen receptor α in regulating gene expression and proliferation networks in breast cancer cells. Carcinogenesis. doi: 10.1093/carcin/bgs223
  29. 29.
    Ru Lee W, Chen CC, Liu S et al (2006) 17b-estradiol (E2) induces cdc25A Gene expression in breast cancer cells by genomic and non-genomic pathways. J Cell Biochem 99:209–220CrossRefPubMedGoogle Scholar
  30. 30.
    Miyamoto T, Shiozawa T, Kashima H et al (2006) Estrogen up-regulates mismatch repair activity in normal and malignant endometrial glandular cells. Endocrinology 147:4863–4870CrossRefPubMedGoogle Scholar
  31. 31.
    van der Klift HM, Jansen AM, van der Steenstraten N et al (2015) Splicing analysis for exonic and intronic mismatch repair gene variants associated with lynch syndrome confirms high concordance between minigene assays and patient RNA analyses. Mol Genet Genomic Med. doi: 10.1002/mgg3.145
  32. 32.
    Wibom C, Sjöström S, Henriksson R et al (2012) DNA-repair gene variants are associated with glioblastoma survival. Acta Oncol. doi: 10.3109/0284186X.2011.616284
  33. 33.
    Ward AJ, Cooper TA (2010) NIH public access. J Pathol 220:152–163PubMedPubMedCentralGoogle Scholar
  34. 34.
    Zahary MN, Kaur G, Abu Hassan MR et al (2012) Germline mutation analysis of MLH1 and MSH2 in malaysian lynch syndrome patients. World J Gastroenterol. doi: 10.3748/wjg.v18.i8.814
  35. 35.
    Langeberg WJ, Kwon EM, Koopmeiners JS et al (2010) Population-based study of the association of variants in mismatch repair genes with prostate cancer risk and outcomes. Cancer Epidemiol Biomark Prev. doi: 10.1158/1055-9965.EPI-09-0800

Copyright information

© Arányi Lajos Foundation 2017

Authors and Affiliations

  • Poliane da Silva Calixto
    • 1
    • 2
  • Otávio Sérgio Lopes
    • 3
    • 4
  • Mayara dos Santos Maia
    • 1
    • 2
  • Sylvia Satomi Takeno Herrero
    • 1
  • Carlos Alberto Longui
    • 4
  • Cynthia Germoglio Farias Melo
    • 1
  • Ivan Rodrigues de Carvalho Filho
    • 5
  • Leonardo Ferreira Soares
    • 6
  • Arnaldo Correia de Medeiros
    • 7
  • Plínio Delatorre
    • 1
    • 2
    • 8
  • André Salim khayat
    • 9
  • Rommel Rodriguez Burbano
    • 9
  • Eleonidas Moura Lima
    • 1
    • 2
    • 8
    Email author
  1. 1.Laboratório de Biologia Molecular Estrutural e Oncogenética – LBMEOUniversidade Federal da ParaíbaJoão PessoaBrazil
  2. 2.Programa de Pós-Graduação em Biologia Celular e MolecularUniversidade Federal da ParaíbaJoão PessoaBrazil
  3. 3.Departamento de Dermatologia, Clinica Dermatológica Santa CatarinaJoão PessoaBrazil
  4. 4.Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Ciências Médicas da Santa Casa de São PauloSão Paulo SPBrazil
  5. 5.Depatamento de PatologiaLaboratório de Análises Médicas – UNILABJoão PessoaBrazil
  6. 6.Departamento de FarmáciaUniversidade Estadual da ParaíbaCampina GrandeBrazil
  7. 7.Departamento de MedicinaUniversidade Federal da ParaíbaJoão PessoaBrazil
  8. 8.Departamento de Biologia MolecularUniversidade Federal da ParaíbaJoão PessoaBrazil
  9. 9.Instituto de Ciências BiológicasUniversidade Federal do ParáBelémBrazil

Personalised recommendations