Advertisement

Pathology & Oncology Research

, Volume 24, Issue 3, pp 483–488 | Cite as

MiR-16-1 Targeted Silences Far Upstream Element Binding Protein 1 to Advance the Chemosensitivity to Adriamycin in Gastric Cancer

  • Danyi Zhao
  • Yang Zhang
  • Lei SongEmail author
Original Article

Abstract

Chemotherapy can prevent metastasis and recurrence of gastric cancer (GC), and is a well supplement for operation. But, chemotherapy resistance has severely restricted the application of chemotherapy. This study aimed to investigate the regulatory roles and molecular mechanism of miR-16-1 to the chemosensitivity to adriamycin in GC. In this study, the expression of miR-16-1 and FUBP1 was down-regulated and up-regulated respectively in adriamycin-resistant GC tissues and cell lines, and represented a negative relationship between them. MiR-16-1 could silence FUBP1 directly and specifically, FUBP1 was a target gene of miR-16-1. Silence of FUBP1 inhibited the half maximal inhibitory concentration (IC50) of SGC7901/AR cell line to adriamycin, chemosensitivity enhanced significantly. Moreover, FUBP1 silence in SGC7901/AR cell line also inhibited proliferation and invasion, and advanced cell apoptosis. To sum up, the expression of miR-16-1 was positively related with the chemosensitivity of GC to adriamycin, and miR-16-1 could targeted silence FUBP1 to advance the chemosensitivity to adriamycin in GC, which might be a novel potential therapeutic target for GC.

Keywords

Gastric cancer microRNA-16-1 Far upstream element binding protein 1 Chemosensitivity Adriamycin 

Notes

Acknowledgements

This work was supported by the National Nature Science Foundation of China (81272716).

Author Contributions

DZ and LS participated in the study design and drafted the manuscript. DZ and YZ carried out the in vitro studies and performed the statistical analysis. DZ conceived of the study and helped to draft the manuscript. All authors read and approved the final manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. 1.
    Sugano K (2015) Screening of gastric cancer in Asia. Best Pract Res Clin Gastroenterol 29(6):895–905CrossRefPubMedGoogle Scholar
  2. 2.
    Newton AD, Datta J, Loaiza-Bonilla A, Karakousis GC, Roses RE (2015) Neoadjuvant therapy for gastric cancer: current evidence and future directions. J Gastrointest Oncol 6(5):534–543PubMedPubMedCentralGoogle Scholar
  3. 3.
    Piletič K, Kunej T (2016) MicroRNA epigenetic signatures in human disease. Arch Toxicol 90(10):2405–2419CrossRefPubMedGoogle Scholar
  4. 4.
    Mohammadi A, Mansoori B, Baradaran B (2016) The role of microRNAs in colorectal cancer. Biomed Pharmacother 84:705–713CrossRefPubMedGoogle Scholar
  5. 5.
    Sekhon K, Bucay N, Majid S, Dahiya R, Saini S (2016) MicroRNAs and epithelial-mesenchymal transition in prostate cancer. Oncotarget 7(41):67597–67611CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Yang Y, Zhang P, Zhao Y, Yang J, Jiang G, Fan J (2016) Decreased MicroRNA-26a expression causes cisplatin resistance in human non-small cell lung cancer. Cancer Biol Ther 17(5):515–525CrossRefPubMedGoogle Scholar
  7. 7.
    Li J, Ju J, Ni B, Wang H (2016) The emerging role of miR-506 in cancer. Oncotarget 7(38):62778–62788PubMedPubMedCentralGoogle Scholar
  8. 8.
    Pekarsky Y, Croce CM (2015) Role of miR-15/16 in CLL. Cell Death Differ 22(1):6–11CrossRefPubMedGoogle Scholar
  9. 9.
    Wang W, Chen J, Dai J, Zhang B, Wang F, Sun Y (2016) MicroRNA-16-1 inhibits tumor cell proliferation and induces apoptosis in A549 non-small cell lung carcinoma cells. Oncol Res 24(5):345–351CrossRefPubMedGoogle Scholar
  10. 10.
    Sam S, Sam MR, Esmaeillou M, Safaralizadeh R (2016) Effective targeting Survivin, caspase-3 and MicroRNA-16-1 expression by methyl-3-pentyl-6-methoxyprodigiosene triggers apoptosis in colorectal cancer stem-like cells. Pathol Oncol Res 22(4):715–723CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang C, Fang X, Li W, Shi Q, Wu L, Chen X, Huang Z, Wu P, Wang Z, Liao Z (2014) Influence of recombinant lentiviral vector encoding miR-15a/16-1 in biological features of human nasopharyngeal carcinoma CNE-2Z cells. Cancer Biother Radiopharm 29(10):422–427CrossRefPubMedGoogle Scholar
  12. 12.
    Li X, Ling N, Bai Y, Dong W, Hui GZ, Liu D, Zhao J, Hu J (2013) MiR-16-1 plays a role in reducing migration and invasion of glioma cells. Anat Rec (Hoboken) 296(3):427–432CrossRefGoogle Scholar
  13. 13.
    Cai CK, Zhao GY, Tian LY, Liu L, Yan K, Ma YL, Ji ZW, Li XX, Han K, Gao J, Qiu XC, Fan QY, Yang TT, Ma BA (2012) miR-15a and miR-16-1 downregulate CCND1 and induce apoptosis and cell cycle arrest in osteosarcoma. Oncol Rep 28(5):1764–1770CrossRefPubMedGoogle Scholar
  14. 14.
    Wang T, Hou J, Li Z, Zheng Z, Wei J, Song D, Hu T, Wu Q, Yang JY, Cai JC (2017) miR-15a-3p and miR-16-1-3p negatively regulate Twist1 to repress gastric cancer cell invasion and metastasis. Int J Biol Sci 13(1):122–134CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kang W, Tong JH, Lung RW, Dong Y, Zhao J, Liang Q, Zhang L, Pan Y, Yang W, Pang JC, Cheng AS, Yu J, To KF (2015 Feb 22) Targeting of YAP1 by microRNA-15a and microRNA-16-1 exerts tumor suppressor function in gastricadenocarcinoma. Mol Cancer 14:52. doi: 10.1186/s12943-015-0323-3 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Shang C, Guo Y, Zhang J, Huang B (2016) Silence of long noncoding RNA UCA1 inhibits malignant proliferation and chemotherapy resistance to adriamycin in gastric cancer. Cancer Chemother Pharmacol 77(5):1061–1067CrossRefPubMedGoogle Scholar
  17. 17.
    Lu C, Shan Z, Li C, Yang L (2017) MiR-129 regulates cisplatin-resistance in human gastric cancer cells by targeting P-gp. Biomed Pharmacother 86:450–456CrossRefPubMedGoogle Scholar
  18. 18.
    Cao W, Wei W, Zhan Z, Xie Y, Xiao Q (2016) MiR-1284 modulates multidrug resistance of gastric cancer cells by targeting EIF4A1. Oncol Rep 5:2583–2591CrossRefGoogle Scholar
  19. 19.
    Li H, Wang Z, Zhou X, Cheng Y, Xie Z, Manley JL, Feng Y (2013) Far upstream element-binding protein 1 and RNA secondary structure both mediate second-step splicing repression. Proc Natl Acad Sci U S A 110:E2687–E2695CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Olanich ME, Moss BL, Piwnica-Worms D, Townsend RR, Weber JD (2011) Identification of FUSE-binding protein 1 as a regulatory mRNA-binding protein that represses nucleophosmin translation. Oncogene 30:77–86CrossRefPubMedGoogle Scholar
  21. 21.
    Samarin J, Laketa V, Malz M, Roessler S, Stein I, Horwitz E, Singer S, Dimou E, Cigliano A, Bissinger M, Falk CS, Chen X, Dooley S, Pikarsky E, Calvisi DF, Schultz C, Schirmacher P, Breuhahn K (2016) PI3K/AKT/mTOR-dependent stabilization of oncogenic far-upstream element binding proteins in hepatocellular carcinoma cells. Hepatology 63(3):813–826CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sheng H, Ying L, Zheng L, Zhang D, Zhu C, Wu J, Feng J, Su D (2015) Down expression of FBP1 is a negative prognostic factor for non-small-cell lung cancer. Cancer Investig 33(5):197–204CrossRefGoogle Scholar
  23. 23.
    Liu ZH, Hu JL, Liang JZ, Zhou AJ, Li MZ, Yan SM, Zhang X, Gao S, Chen L, Zhong Q, Zeng MS (2015) Far upstream element-binding protein 1 is a prognostic biomarker and promotes nasopharyngeal carcinoma progression. Cell Death Dis 6:e1920CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hong Y, Shi Y, Shang C, Xue Y, Liu Y (2016) Influence of far upstream element binding protein 1 gene on chemotherapy sensitivity in human U251 glioblastoma cells. Arch Med Sci 12(1):156–162CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ding Z, Liu X, Liu Y, Zhang J, Huang X, Yang X, Yao L, Cui G, Wang D (2015) Expression of far upstream element (FUSE) binding protein 1 in human glioma is correlated with c-Myc and cell proliferation. Mol Carcinog 54(5):405–415CrossRefPubMedGoogle Scholar
  26. 26.
    Yang L, Zhu JY, Zhang JG, Bao BJ, Guan CQ, Yang XJ, Liu YH, Huang YJ, Ni RZ, Ji LL (2016) Far upstream element-binding protein 1 (FUBP1) is a potential c-Mycregulator in esophageal squamous cell carcinoma (ESCC) and its expression promotes ESCC progression. Tumour Biol 37(3):4115–4126CrossRefPubMedGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2017

Authors and Affiliations

  1. 1.Department of Oncology, The Second HospitalDalian Medical UniversityDalianChina
  2. 2.Department of Interventional Therapy, The Second HospitalDalian Medical UniversityDalianChina

Personalised recommendations