Abstract
Purpose
This study aimed to develop and optimize lutein-loaded solid lipid nanoparticles (Lu-SLN) for ocular delivery. The objective was to achieve the mean particle size of Lu-SLN less than 100 nm, sustain the drug release up to 8 h, and evaluate the corneal permeation parameters of the optimized batch.
Methods
Lu-SLN were prepared by hot homogenization and cold dilution method. The Plackett-Burman screening design and 32 full factorial design were adopted sequentially to study the effect of various formulation and process variables, and further optimized with the help of desirability function.
Results
The statistical designs revealed that the amount of Gelucire® 44/14 and homogenization speed had a significant effect (P < 0.05) on the mean particle size and % drug release of Lu-SLN. The optimized formulation prepared with the help of the desirability function showed a mean particle size of 79.70 nm and sustained the drug release up to 8 h in simulated tear fluid. The apparent permeability coefficient and steady-state flux of the optimized batch were found to be \(1.09 \times {10}^{-4}\frac{\mathrm{cm}}{\mathrm{h}}\) and \(7.33 \times {10}^{-2}\frac{{\mu \mathrm{g}}}{{\mathrm{cm}}^{2}}/\mathrm{h}\), respectively, and the corneal hydration was found to be 78.35%.
Conclusions
Lu-SLN with chosen objectives can be successfully prepared by hot homogenization technique and ex vivo evaluation revealed that optimized formulation avoided any damage to the cornea.
Graphical abstract

This is a preview of subscription content, access via your institution.








References
- 1.
World Health Organization. Report on Blindness and vision impairment prevention. 2020. https://www.who.int/blindness/causes/priority/en/index7.html. Last accessed on 4 May 2020.
- 2.
Mitchell P, Liew G, Gopinath B, Wong TY. Age-related macular degeneration. Lancet. 2018;392(10153):1147–59. https://doi.org/10.1016/s0140-6736(18)31550-2.
- 3.
Xu Q, Cao S, Rajapakse S, Matsubara JA. Understanding AMD by analogy: systematic review of lipid-related common pathogenic mechanisms in AMD, AD, AS and GN. Lipids Health Dis. 2018;17(1):3. https://doi.org/10.1186/s12944-017-0647-7.
- 4.
Muñoz-Ramón PV, Hernández Martínez P, Muñoz-Negrete FJ. New therapeutic targets in the treatment of age-related macular degeneration. Arch Soc Esp Oftalmol (English Edition). 2020;95(2):75–83. https://doi.org/10.1016/j.oftale.2019.09.013.
- 5.
Wong CW, Wong TT. Posterior segment drug delivery for the treatment of exudative age-related macular degeneration and diabetic macular oedema. Br J Ophthalmol. 2019;103(10):1356–60. https://doi.org/10.1136/bjophthalmol-2018-313462.
- 6.
Jiang S, Franco YL, Zhou Y, Chen J. Nanotechnology in retinal drug delivery. Int J Ophthalmol. 2018;11(6):1038–44. https://doi.org/10.18240/ijo.2018.06.23.
- 7.
Wang D, Jiang Y, He M, Scheetz J, Wang W. Disparities in the global burden of age-related macular degeneration: an analysis of trends from 1990 to 2015. Curr Eye Res. 2019;44(6):657–63. https://doi.org/10.1080/02713683.2019.1576907.
- 8.
More P, Almuhtaseb H, Smith D, Fraser S, Lotery AJ. Socio-economic status and outcomes for patients with age-related macular degeneration. Eye (London, England). 2019;33(8):1224–31. https://doi.org/10.1038/s41433-019-0393-3.
- 9.
Agrahari V, Mandal A, Agrahari V, Trinh HM, Joseph M, Ray A, et al. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res. 2016;6(6):735–54. https://doi.org/10.1007/s13346-016-0339-2.
- 10.
Al-Zamil WM, Yassin SA. Recent developments in age-related macular degeneration: a review. Clin Interv Aging. 2017;12:1313–30. https://doi.org/10.2147/cia.s143508.
- 11.
Kumar-Singh R. The role of complement membrane attack complex in dry and wet AMD - from hypothesis to clinical trials. Exp Eye Res. 2019;184:266–77. https://doi.org/10.1016/j.exer.2019.05.006.
- 12.
Sachdeva MM, Moshiri A, Leder HA, Scott AW. Endophthalmitis following intravitreal injection of anti-VEGF agents: long-term outcomes and the identification of unusual micro-organisms. J Ophthalmic Inflamm Infect. 2016;6(1):2. https://doi.org/10.1186/s12348-015-0069-5.
- 13.
Klein R, Lee KE, Tsai MY, Cruickshanks KJ, Gangnon RE, Klein BEK. Oxidized low-density lipoprotein and the incidence of age-related macular degeneration. Ophthalmology. 2019;126(5):752–8. https://doi.org/10.1016/j.ophtha.2018.12.026.
- 14.
Martin L. Targeting modifiable risk factors in age-related macular degeneration in optometric practice in Sweden. Clin Optom. 2017;9:77–83. https://doi.org/10.2147/opto.s129942.
- 15.
Leung TW, Li RWH, Kee CS. Blue-light filtering spectacle lenses: optical and clinical performances. PLoS One. 2017;12(1):e0169114-e. https://doi.org/10.1371/journal.pone.0169114.
- 16.
Roberts JE, Dennison J. The photobiology of lutein and zeaxanthin in the eye. J Ophthalmol. 2015;2015:687173. https://doi.org/10.1155/2015/687173.
- 17.
Feng L, Nie K, Jiang H, Fan W. Effects of lutein supplementation in age-related macular degeneration. PLoS One. 2019;14(12):e0227048-e. https://doi.org/10.1371/journal.pone.0227048.
- 18.
Yanai R, Chen S, Uchi SH, Nanri T, Connor KM, Kimura K. Attenuation of choroidal neovascularization by dietary intake of ω-3 long-chain polyunsaturated fatty acids and lutein in mice. PLoS One. 2018;13(4):e0196037-e. https://doi.org/10.1371/journal.pone.0196037.
- 19.
Bernstein PS, Li B, Vachali PP, Gorusupudi A, Shyam R, Henriksen BS, et al. Lutein, zeaxanthin, and meso-zeaxanthin: the basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Prog Retin Eye Res. 2016;50:34–66. https://doi.org/10.1016/j.preteyeres.2015.10.003.
- 20.
Liu C, Chang D, Zhang X, Sui H, Kong Y, Zhu R, et al. Oral fast-dissolving films containing lutein nanocrystals for improved bioavailability: formulation development, in vitro and in vivo evaluation. AAPS PharmSciTech. 2017;18(8):2957–64. https://doi.org/10.1208/s12249-017-0777-2.
- 21.
Buscemi S, Corleo D, Di Pace F, Petroni ML, Satriano A, Marchesini G. The effect of lutein on eye and extra-eye health. Nutrients. 2018;10(9):1321. https://doi.org/10.3390/nu10091321.
- 22.
Ranard KM, Jeon S, Mohn ES, Griffiths JC, Johnson EJ, Erdman JW Jr. Dietary guidance for lutein: consideration for intake recommendations is scientifically supported. Eur J Nutr. 2017;56(Suppl 3):37–42. https://doi.org/10.1007/s00394-017-1580-2.
- 23.
Ochoa Becerra M, Mojica Contreras L, Hsieh Lo M, Mateos Díaz J, Castillo HG. Lutein as a functional food ingredient: stability and bioavailability. J Funct Foods. 2020;66:103771. https://doi.org/10.1016/j.jff.2019.103771.
- 24.
Musch DC. Evidence for including lutein and zeaxanthin in oral supplements for age-related macular degeneration. JAMA Ophthalmology. 2014;132(2):139. https://doi.org/10.1001/jamaophthalmol.2013.7443.
- 25.
Lombardo M, Villari V, Micali N, Roy P, Sousa SH, Lombardo G. Assessment of trans-scleral iontophoresis delivery of lutein to the human retina. J Biophotonics. 2017;11(3):e201700095. https://doi.org/10.1002/jbio.201700095.
- 26.
Joachim N, Mitchell P, Burlutsky G, Kifley A, Wang JJ. The incidence and progression of age-related macular degeneration over 15 years. Ophthalmology. 2015;122(12):2482–9. https://doi.org/10.1016/j.ophtha.2015.08.002.
- 27.
Chittasupho C, Posritong P, Ariyawong P. Stability, cytotoxicity, and retinal pigment epithelial cell binding of hyaluronic acid-coated PLGA nanoparticles encapsulating lutein. AAPS PharmSciTech. 2018;20(1):1–13. https://doi.org/10.1208/s12249-018-1256-0.
- 28.
Rodrigues GA, Lutz D, Shen J, Yuan X, Shen H, Cunningham J, et al. Topical drug delivery to the posterior segment of the eye: addressing the challenge of preclinical to clinical translation. Pharm Res. 2018;35(12):245. https://doi.org/10.1007/s11095-018-2519-x.
- 29.
Dubald M, Bourgeois S, Andrieu V, Fessi H. Ophthalmic drug delivery systems for antibiotherapy-a review. Pharmaceutics. 2018;10(1):10. https://doi.org/10.3390/pharmaceutics10010010.
- 30.
Awwad S, Mohamed Ahmed AHA, Sharma G, Heng JS, Khaw PT, Brocchini S, et al. Principles of pharmacology in the eye. Br J Pharmacol. 2017;174(23):4205–23. https://doi.org/10.1111/bph.14024.
- 31.
Gote V, Sikder S, Sicotte J, Pal D. Ocular drug delivery: present innovations and future challenges. J Pharmacol Exp Ther. 2019;370(3):602–24. https://doi.org/10.1124/jpet.119.256933.
- 32.
Souto EB, Dias-Ferreira J, López-Machado A, Ettcheto M, Cano A, Camins Espuny A, et al. Advanced formulation approaches for ocular drug delivery: state-of-the-art and recent patents. Pharmaceutics. 2019;11(9):460. https://doi.org/10.3390/pharmaceutics11090460.
- 33.
Meng T, Kulkarni V, Simmers R, Brar V, Xu Q. Therapeutic implications of nanomedicine for ocular drug delivery. Drug Discov Today. 2019;24(8):1524–38. https://doi.org/10.1016/j.drudis.2019.05.006.
- 34.
Bachu RD, Chowdhury P, Al-Saedi ZHF, Karla PK, Boddu SHS. Ocular drug delivery barriers-role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics. 2018;10(1):28. https://doi.org/10.3390/pharmaceutics10010028.
- 35.
Lynch C, Kondiah PPD, Choonara YE, du Toit LC, Ally N, Pillay V. Advances in biodegradable nano-sized polymer-based ocular drug delivery. Polymers. 2019;11(8):1371. https://doi.org/10.3390/polym11081371.
- 36.
Battaglia L, Serpe L, Foglietta F, Muntoni E, Gallarate M, Del Pozo RA, et al. Application of lipid nanoparticles to ocular drug delivery. Expert Opin Drug Deliv. 2016;13(12):1743–57. https://doi.org/10.1080/17425247.2016.1201059.
- 37.
Puglia C, Offerta A, Carbone C, Bonina F, Pignatello R, Puglisi G. Lipid nanocarriers (LNC) and their applications in ocular drug delivery. Curr Med Chem. 2015;22(13):1589–602. https://doi.org/10.2174/0929867322666150209152259.
- 38.
Wu M, Feng Z, Deng Y, Zhong C, Liu Y, Liu J, et al. Liquid antisolvent precipitation: an effective method for ocular targeting of lutein esters. Int J Nanomed. 2019;14:2667–81. https://doi.org/10.2147/ijn.s194068.
- 39.
Liu CH, Chiu HC, Wu WC, Sahoo SL, Hsu CY. Novel lutein loaded lipid nanoparticles on porcine corneal distribution. J Ophthalmol. 2014;2014:304694. https://doi.org/10.1155/2014/304694.
- 40.
Chaiyasan W, Srinivas SP, Tiyaboonchai W. Mucoadhesive chitosan-dextran sulfate nanoparticles for sustained drug delivery to the ocular surface. Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics. 2013;29(2):200–7. https://doi.org/10.1089/jop.2012.0193.
- 41.
Lim C, Kim DW, Sim T, Hoang NH, Lee JW, Lee ES, et al. Preparation and characterization of a lutein loading nanoemulsion system for ophthalmic eye drops. J Drug Deliv Sci Technol. 2016;36:168–74. https://doi.org/10.1016/j.jddst.2016.10.009.
- 42.
Hazzah HA, Farid RM, Nasra MMA, Hazzah WA, El-Massik MA, Abdallah OY. Gelucire-based nanoparticles for curcumin targeting to oral mucosa: preparation, characterization, and antimicrobial activity assessment. J Pharm Sci. 2015;104(11):3913–24. https://doi.org/10.1002/jps.24590.
- 43.
Shah SR, Parikh RH, Chavda JR, Sheth NR. Application of Plackett-Burman screening design for preparing glibenclamide nanoparticles for dissolution enhancement. Powder Technol. 2013;235:405–11. https://doi.org/10.1016/j.powtec.2012.10.055.
- 44.
Shah SR, Parikh RH, Chavda JR, Sheth NR. Glibenclamide nanocrystals for bioavailability enhancement: formulation design, process optimization, and pharmacodynamic evaluation. J Pharm Innov. 2014;9(3):227–37. https://doi.org/10.1007/s12247-014-9189-y.
- 45.
Shah S, Parmar B, Soniwala M, Chavda J. Design, optimization, and evaluation of lurasidone hydrochloride nanocrystals. AAPS PharmSciTech. 2015;17(5):1150–8. https://doi.org/10.1208/s12249-015-0449-z.
- 46.
Ahmad I, Pandit J, Sultana Y, Mishra AK, Hazari PP, Aqil M. Optimization by design of etoposide loaded solid lipid nanoparticles for ocular delivery: characterization, pharmacokinetic and deposition study. Mater Sci Eng C. 2019;100:959–70. https://doi.org/10.1016/j.msec.2019.03.060.
- 47.
Liu R, Liu Z, Zhang C, Zhang B. Nanostructured lipid carriers as novel ophthalmic delivery system for mangiferin: improving in vivo ocular bioavailability. J Pharm Sci. 2012;101(10):3833–44. https://doi.org/10.1002/jps.23251.
- 48.
Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, et al. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12(3):263–71. https://doi.org/10.1208/s12248-010-9185-1.
- 49.
Khare A, Singh I, Pawar P, Grover K. Design and evaluation of voriconazole loaded solid lipid nanoparticles for ophthalmic application. J Drug Deliv. 2016;2016:6590361. https://doi.org/10.1155/2016/6590361.
- 50.
Khames A, Khaleel MA, El-Badawy MF, El-Nezhawy AOH. Natamycin solid lipid nanoparticles - sustained ocular delivery system of higher corneal penetration against deep fungal keratitis: preparation and optimization. Int J Nanomed. 2019;14:2515–31. https://doi.org/10.2147/ijn.s190502.
- 51.
Zhang W, Li X, Ye T, Chen F, Yu S, Chen J, et al. Nanostructured lipid carrier surface modified with Eudragit RS 100 and its potential ophthalmic functions. Int J Nanomed. 2014;9:4305–15. https://doi.org/10.2147/ijn.s63414.
- 52.
Yadav M, Schiavone N, Guzman-Aranguez A, Giansanti F, Papucci L, de Lara MJP, et al. Atorvastatin-loaded solid lipid nanoparticles as eye drops: proposed treatment option for age-related macular degeneration (AMD). Drug Deliv Transl Res. 2020;10(4):919–44. https://doi.org/10.1007/s13346-020-00733-4.
- 53.
Greenland S, Senn SJ, Rothman KJ, Carlin JB, Poole C, Goodman SN, et al. Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. Eur J Epidemiol. 2016;31(4):337–50. https://doi.org/10.1007/s10654-016-0149-3.
- 54.
Nimtrakul P, Tiyaboonchai W, Lamlertthon S. Amphotericin B loaded nanostructured lipid carriers for parenteral delivery: characterization, antifungal and in vitro toxicity assessment. Curr Drug Deliv. 2019;16(7):645–53. https://doi.org/10.2174/1567201816666190729145223.
- 55.
Bhalekar M, Upadhaya P, Madgulkar A. Formulation and characterization of solid lipid nanoparticles for an anti-retroviral drug darunavir. Appl Nanosci. 2017;7(1–2):47–57. https://doi.org/10.1007/s13204-017-0547-1.
- 56.
Morrison PWJ, Khutoryanskiy VV. Advances in ophthalmic drug delivery. Ther Deliv. 2014;5(12):1297–315. https://doi.org/10.4155/tde.14.75.
- 57.
Moiseev RV, Morrison PWJ, Steele F, Khutoryanskiy VV. Penetration enhancers in ocular drug delivery. Pharmaceutics. 2019;11(7):321. https://doi.org/10.3390/pharmaceutics11070321.
- 58.
Deshkar S, Quazi N, Patil A, Poddar S. Effect of Gelucire 44/14 on fluconazole solid lipid nanoparticles: formulation, optimization and in vitro characterization. Drug Deliv Lett. 2016;5(3):173–87. https://doi.org/10.2174/221030310503160401121141.
- 59.
Urbán-Morlán Z, Ganem-Rondero A, Melgoza-Contreras LM, Escobar-Chávez JJ, Nava-Arzaluz MG, Quintanar-Guerrero D. Preparation and characterization of solid lipid nanoparticles containing cyclosporine by the emulsification-diffusion method. Int J Nanomed. 2010;5:611–20. https://doi.org/10.2147/ijn.s12125.
- 60.
Shanmugam S, Baskaran R, Balakrishnan P, Thapa P, Yong CS, Yoo BK. Solid self-nanoemulsifying drug delivery system (S-SNEDDS) containing phosphatidylcholine for enhanced bioavailability of highly lipophilic bioactive carotenoid lutein. Eur J Pharm Biopharm. 2011;79(2):250–7. https://doi.org/10.1016/j.ejpb.2011.04.012.
- 61.
Sreekumar S, Goycoolea FM, Moerschbacher BM, Rivera-Rodriguez GR. Parameters influencing the size of chitosan-TPP nano- and microparticles. Sci Rep. 2018;8(1):4695. https://doi.org/10.1038/s41598-018-23064-4.
- 62.
Noriega-Peláez EK, Mendoza-Muñoz N, Ganem-Quintanar A, Quintanar-Guerrero D. Optimization of the emulsification and solvent displacement method for the preparation of solid lipid nanoparticles. Drug Dev Ind Pharm. 2010;37(2):160–6. https://doi.org/10.3109/03639045.2010.501800.
- 63.
Kushwaha AK, Vuddanda PR, Karunanidhi P, Singh SK, Singh S. Development and evaluation of solid lipid nanoparticles of raloxifene hydrochloride for enhanced bioavailability. Biomed Res Int. 2013;2013:584549. https://doi.org/10.1155/2013/584549.
- 64.
Kuo Y-C, Chung J-F. Physicochemical properties of nevirapine-loaded solid lipid nanoparticles and nanostructured lipid carriers. Colloids Surf B. 2011;83(2):299–306. https://doi.org/10.1016/j.colsurfb.2010.11.037.
- 65.
Chokshi NV, Khatri HN, Patel MM. Formulation, optimization, and characterization of rifampicin-loaded solid lipid nanoparticles for the treatment of tuberculosis. Drug Dev Ind Pharm. 2018;44(12):1975–89. https://doi.org/10.1080/03639045.2018.1506472.
- 66.
Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J. 2010;12(3):348–60. https://doi.org/10.1208/s12248-010-9183-3.
- 67.
Liu R, Liu Z, Zhang C, Zhang B. Gelucire44/14 as a novel absorption enhancer for drugs with different hydrophilicities: in vitro and in vivo improvement on transcorneal permeation. J Pharm Sci. 2011;100(8):3186–95. https://doi.org/10.1002/jps.22540.
- 68.
Li X, Nie SF, Kong J, Li N, Ju CY, Pan WS. A controlled-release ocular delivery system for ibuprofen based on nanostructured lipid carriers. Int J Pharm. 2008;363(1–2):177–82. https://doi.org/10.1016/j.ijpharm.2008.07.017.
- 69.
Clayson K, Sandwisch T, Ma Y, Pavlatos E, Pan X, Liu J. Corneal hydration control during ex vivo experimentation using poloxamers. Curr Eye Res. 2020;45(2):111–7. https://doi.org/10.1080/02713683.2019.1663387.
Author information
Affiliations
Contributions
All authors contributed to the work.
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Shah, S., Bhanderi, B., Soniwala, M. et al. Lutein-Loaded Solid Lipid Nanoparticles for Ocular Delivery: Statistical Optimization and Ex Vivo Evaluation. J Pharm Innov (2021). https://doi.org/10.1007/s12247-021-09537-6
Accepted:
Published:
Keywords
- Corneal permeation
- Experimental designs
- Lutein
- Ocular delivery
- Solid lipid nanoparticles
- Statistical optimization