Skip to main content
Log in

Part 3: Enhanced Approaches to the Development of the Control Strategy and its Implementation in the Manufacturing Process Description

  • Review Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

A series of case histories from IQ consortium member companies will be presented to exemplify how the application of the ICH Q11 vision for enhanced Quality by Design (QbD) development of the active pharmaceutical ingredient (API) can lead to differentiated outcomes for elements such as the API supply chain and control strategy, and how changes to such outcomes are managed over the lifecycle. A series of articles will address “flexibility” and look to provide recommendations for the further development of the ICH Q11 vision. The focus of this work will address flexibility associated with the “Enhanced Approaches to the Development of the Control Strategy and Its Implementation in the Manufacturing Process Description.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

Case Study 1 & 2

  1. ICH Q11 Q9 Guidelines.

Case Study 2

  1. Seibert K, Sethuraman S, Mitchell J, Griffiths K, McGarvey B. The use of routine process capability for the determination of process parameter criticality in small-molecule API synthesis: J. Pharm Innov. 2008;3:105–12.

    Article  Google Scholar 

  2. Mitchell J, Abhinava K, Griffiths K, McGarvey B, Seibert K, Sethuraman S. Unit operations characterization using historical manufacturing performance. Ind Eng Chem Res. 2008;47:6612–21.

    Article  CAS  Google Scholar 

Case Study 3

  1. Am Ende D, Clifford P, DeAntonis D, Santamaria C, Brenek S. Preparation of grignard reactants: ftir and calorimetric investigation for safe scale up. Org. Proc. Res. Dev. 1999;3:319–29.

    Article  CAS  Google Scholar 

  2. Caygill G, Zanfir M, Gavriilidis A. Scalable reactor design for pharmaceuticals and fine chemicals production. 1: potential scale-up obstacles. Org. Proc. Res. Dev. 2006;10:539–52.

    Article  CAS  Google Scholar 

  3. Figueroa I, Vaidyaraman S, Viswanath S. Model-based scale-up and design space determination for a batch reactive distillation with a dean-stark trap. Org. Proc. Res. Dev. 2013;17:1300–10.

    Article  CAS  Google Scholar 

  4. Gonzalez-Bobes F, Kopp N, Li L, Deerberg J, Sharma P, Leung S, et al. Scale-up of azide chemistry: a case study. Org. Proc. Res. Dev. 2012;16:2051–7.

    Article  CAS  Google Scholar 

  5. Hoekstra L, Vonk P, Hulshof L. Modeling the scale-up of contact drying processes. Org. Proc. Res. Dev. 2006;10(3):409–16.

    Article  CAS  Google Scholar 

  6. Tangler A, Szabados E. Overcoming problems at elaboration and scale-up of liquid-phase Pd/C mediated catalytic hydrogenations in pharmaceutical production. Org. Process Res. Dev. 2016;20:1246–51.

    Article  CAS  Google Scholar 

  7. Anderson N. Practical use of continuous processing in developing and scaling up laboratory processes. Org. Proc. Res. Dev. 2001;5:613–21.

    Article  CAS  Google Scholar 

  8. Johnson M, May S, Calvin J, Remacle J, Stout J, Diseroad W, et al. Development and scale-up of a continuous, high-pressure, asymmetric hydrogenation reaction, workup, and isolation. Org. Proc. Res. Dev. 2012;16:1017–38.

    Article  CAS  Google Scholar 

  9. Polster C, Cole K, Burcham C, Campbell B, Frederick A, Hansen M, et al. Pilot-scale continuous production of LY2888721: amide formation and reactive crystallization. Org Proc Res Dev. 2014;18:1295–309.

    Article  CAS  Google Scholar 

  10. Zaborenko N, Lynder R, Braden T, Campbell B, Hansen M, Johnson M. Development of pilot-scale continuous production of an LY2886721 starting material by packed-bed hydrogenolysis. Org. Proc. Res. Dev. 2015;19:1231–43.

    Article  CAS  Google Scholar 

  11. Food and Drug Administration Code of Federal Regulations, Tittle 21, Volume 4 (21CFR210.3).

  12. Thomson N, Singer R, Seibert K, Luciani C, Srivastava S, Kiesman W, et al. Case studies in development of drug substance control strategy. Org. Proc. Res. Dev. 2015;19:935–48.

    Article  CAS  Google Scholar 

  13. Rathore A, Velayudhan A. Guidelines for optimization and scale-up in preparative chromatography. BioPharm International. 2003;16:34–42.

    CAS  Google Scholar 

  14. García-Muñoz S, Luciani C, Vaidyaraman S, Seibert K. Definition of design spaces using mechanistic models and geometric projections of probability maps. Org. Proc. Res. Dev. 2015;19:1012–23.

    Article  CAS  Google Scholar 

Case Study 5

  1. The development of a control strategy for a final intermediate towards the preparation of a drug substance is described in Org. Process Res.Dev.2016, 20, 1781–1791 (published on October 7, 2016).

Download references

Acknowledgements

The authors acknowledge the following for their input and support: Tim Watson, Asher Lower, Tim Curran, Nick Thompson, Steve Tymonko, Jeffrey Kallemeyn, Tim Curran, Adam Looker, John R Donaubauer, and Nathan Ide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt E. Popkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popkin, M.E., Omer, B.A., Seibert, K.D. et al. Part 3: Enhanced Approaches to the Development of the Control Strategy and its Implementation in the Manufacturing Process Description. J Pharm Innov 14, 1–14 (2019). https://doi.org/10.1007/s12247-018-9340-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-018-9340-2

Keywords

Navigation