Design of aperiodic spherical antenna arrays for wideband performance


This paper illustrates a highly nonlinear problem related to the design of aperiodic antenna arrays using spherical geometry for maximum performance. This synthesis of aperiodic spherical antenna arrays considers two design cases: (1) aperiodic arrays with a nonuniform spacing between rings assuming equal element spacings on the same ring (ASANRUE case) and (2) aperiodic arrays with a nonuniform spacing between rings and between antenna elements of the same ring (ASANRNE case). This process is carried out by using the differential evolution (DE) optimization technique with the goal of finding the optimum angular position of each element on the elevation and azimuthal planes to achieve the maximum performance in terms of the side lobe level, directivity, and number of antenna elements used in the array for three design objectives: natural response of the radiation pattern, beam scanning, and the restriction of a minimum distance among elements. The innovative contribution of this paper is the application of the differential evolution algorithm to a nontrivial and highly complex design problem: the aperiodic element distribution over a spherical antenna arrangement. The advantage of this approach with respect to the state of the art on the topic of spherical array design is that a lower side lobe level and maximum directivity for a spherical antenna array can be obtained for aperiodic element distributions with a reduced number of antenna elements and hence a smaller radius, which means less complexity and lower fabrication costs. Simulation results based on CST Microwave Studio are provided to take mutual coupling into account.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22


  1. 1.

    Josefsson L, Persson P (2006) Conformal Array antenna theory and design. IEEE Press, Wiley Interscience, New Jersey

    Google Scholar 

  2. 2.

    Diao J, Kunzler JW, Warnick KF (2017) Sidelobe level and aperture efficiency optimization for tiled aperiodic array antennas. IEEE Trans Antennas Propag 65(12):7083–7090

    Article  Google Scholar 

  3. 3.

    Balanis C (2005) Antenna theory analysis and design, 3rd edn. Wiley – Interscience, New Jersey

    Google Scholar 

  4. 4.

    Marantis L, De Witte E, Brennan PV (2009) “Comparison of various spherical antenna array element distribution”, EuCAP 2009 3rd European Conference on Antennas and Propagation, Berlin Germany, pp. 2980–2984

  5. 5.

    Sengupta DL, Smith TM, Larson RW (1968) Radiation characteristics of a spherical array of circularly polarized elements. IEEE Trans Anten Propagat AP-16(1):2–7

    Article  Google Scholar 

  6. 6.

    Verhaevert J, Van Lil E, Van de Capelle A (2001) Uniform spherical distribution for adaptive array applications. IEEE VTS 53rd Vehicular Technology Conference, Spring 2001. Proceedings (Cat. No.01CH37202), Rhodes, Greece, pp. 98–102

  7. 7.

    Sengupta DL, Ferris JE, Smith TM (1968) Experimental study of a spherical array of circularly polarized elements. Proc IEEE 56:2048–2051

    Article  Google Scholar 

  8. 8.

    Subhashini KR, Kumar ATP, Baranwal A, Reddy MS (2014) “Co sequent shaped pattern synthesis in spherical antenna array with excitation optimization using clever algorithms”, 2014 Annual IEEE India Conference (INDICON) Pune India, pp. 1–4

  9. 9.

    Li W, Liu S, Shi X, Hei Y (2009) Low-sidelobe pattern synthesis of spherical array using the hybrid genetic algorithm. Microw Opt Technol Lett 51(6):1487–1491

    Article  Google Scholar 

  10. 10.

    Chung YC, Haupt R (2002) Low-sidelobe pattern synthesis of spherical arrays using a genetic algorithm. Microw Opt Technol Lett 32(6):412–414

    Article  Google Scholar 

  11. 11.

    Affandi A, Husain M, Kasim N (2013) “Optimization for spherical phased array antenna”, international refereed. J Eng Sci (IRJES) 2:54–50

    Google Scholar 

  12. 12.

    Mandric V, Rupcic S, Zagar D (2012) “Optimization of the spherical antenna arrays”, 54th International Symposium ELMAR-2012, Zadar Croatia, pp.287–292

  13. 13.

    Haupt RL (2015) “Optimizing an antenna array for satellite communications”, 2015 IEEE Symposium Series on Computational Intelligence, Cape Town, South Africa, pp. 1170–1173

  14. 14.

    Wong TT, Luk WS, Heng PA (1997) Sampling with Hammersley and Halton points. J Graph Tools 2(2):9–24

    Article  Google Scholar 

  15. 15.

    Rupcic S, Mandric V, Zagar D (2011) Reduction of sidelobes by nonuniform elements spacing of a spherical antenna array. Radioengineering 20(1):299–306

    Google Scholar 

  16. 16.

    Kumar ATP, Subhashini KR (2013) “Non uniform element angular spacing of a hemi spherical antenna array for vector optimization employing natural computing techniques”, 2013 Ann IEEE India Conf (INDICON), Mumbai India, pp. 1–4

  17. 17.

    Oraizi H, Soleimani H (2015) Optimum pattern synthesis of non-uniform spherical arrays using the Euler rotation. IET Microwav Anten Propagation 9:898–904

    Article  Google Scholar 

  18. 18.

    Panduro MA, Brizuela CA, Balderas LI, Acosta DA (2009) A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays. Progr Electromagn Res B 13:171–186

    Article  Google Scholar 

  19. 19.

    Panduro MA, Mendez AL, Dominguez R, Romero G (2005) Design of non-uniform circular antenna arrays for side lobe reduction using the method of genetic algorithms. AEU-Int J Electron C 60(10):713–717

    Article  Google Scholar 

  20. 20.

    Elizarraras O, Mendes A, Reyna A, Panduro MA (2016) “Design of spherical antenna arrays for a 3D scannable pattern using differential evolution”, 2016 Loughborough Anten Propagat Conf (LAPC), Loughborough UK, pp. 1–5

  21. 21.

    Elizarraras O, Panduro MA, Mendez A, Reyna A, Covarrubias DH (2017) Design of circular antennas arrays of circular subarrays exploting rotational symmetry. J Electromagnet Waves Applicat 31(13):1277–1288

    Article  Google Scholar 

  22. 22.

    Khodier M, Al-Aqeel M (2009) Linear and circular array optimization: a study using particle swarm intelligence. Prog Electromagnet Res B 15:347–373

    Article  Google Scholar 

  23. 23.

    Rocha-Alicano C, Covarrubias-Rosales D, Brizuela-Rodriguez C, Panduro-Mendoza M (2007) Differential evolution algorithm applied to sidelobe level reduction on a planar array. Int J Electromagnet Commun 61:286–290

    Article  Google Scholar 

  24. 24.

    Holland JH (1992) Genetic algorithms. Sci Am 267:62–72.

    Article  Google Scholar 

  25. 25.

    Jones MT (2008) Artificial intelligence a systems approach. Infinity Science Press LCC, Highman

    Google Scholar 

  26. 26.

    Kennedy J, Eberhart R (1995) “Particle swarm optimization”, IEEE International Conference on Neural Networks, Perth WA Australia, pp. 1942–1948

  27. 27.

    Storn R, Price K (1997) Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359

    MathSciNet  Article  Google Scholar 

  28. 28.

    Price KV, Storn RM, Lampinen JA (2005) Differential evolution a practical approach to global optimization. Springer, Germany

    Google Scholar 

  29. 29.

    Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J Res Natl Bur Stand 49(6):409–436

    MathSciNet  Article  Google Scholar 

  30. 30.

    Mehrabian AR, Lucas C (2006) A novel numerical optimization algorithm inspired from weed colonization. Ecol Informat 1:355–366

    Article  Google Scholar 

  31. 31.

    Xin-She Yang, Cuckoo search and firefly algorithm theory and applications, springer. 2014

    Google Scholar 

  32. 32.

    Wong TT, Luk WS, Heng PA (1997) Sampling with Hammersly and Halton points. J Graph Tools 2:9–24

    Article  Google Scholar 

  33. 33.

    Gorman PJ, Gregory MD, Werner DH (April 2014) Design of ultra-wideband, aperiodic antenna arrays with the CMA evolutionary strategy. IEEE Trans Antennas Propag 62(4):1663–1672

    MathSciNet  Article  Google Scholar 

  34. 34.

    Agrawal V, Lo Y (May 1972) Mutual coupling in phased arrays of randomly spaced antennas. IEEE Trans Antennas Propag 20:288–295

    Article  Google Scholar 

  35. 35.

    Hoffman M (1963) Conventions for the analysis of spherical arrays. IEEE Trans Antennas Propag AP-11:390–393

    Article  Google Scholar 

  36. 36.

    Gregory MD, Namin FA, Werner DH (Jan. 2013) Exploiting rotational symmetry for the design of ultra-wideband planar phased array layouts. IEEE Trans Antennas Propag 61(1):176–184

    MathSciNet  Article  Google Scholar 

Download references


This paper has been supported by the Mexican Council for Science and Technology (CONACyT), under Grant no. 2016-01-1680.

Author information



Corresponding author

Correspondence to Marco A. Panduro.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elizarrarás, O., Panduro, M.A., Mendez, A. et al. Design of aperiodic spherical antenna arrays for wideband performance. Ann. Telecommun. (2021).

Download citation


  • Spherical antenna array
  • Differential evolution
  • Side lobe level
  • Directivity
  • Wide bandwidth