Finite Element Model of a High-Stature Male Pedestrian for Simulating Car-to-Pedestrian Collisions

Abstract

Among road traffic deaths, pedestrian accounted for 22 % of all fatalities in the world, 26 % in Europe, and 22 % in the U.S. To investigate the injury risk of the high-stature population, a Finite Element (FE) model corresponding to a male 95th percentile (M95) pedestrian was developed and validated in this study. The model mesh was obtained by morphing the Global Human Body Models Consortium male 50th percentile pedestrian model to the reconstructed geometry of a recruited high-stature human subject. The lower extremity, shoulder, and upper body of the FE model were validated against the Post Mortem Human Surrogate (PMHS) test data recorded in valgus bending, lateral, and anterior-lateral blunt impact tests. Then, a vehicle-pedestrian impact simulation was performed using the whole-body model. In the component validations, the M95 pedestrian model showed higher stiffness than the PMHS test corridors developed for 50th percentile male. The kinematic trajectories predicted by the FE model were well-correlated to the corresponding PMHS test data in whole-body validation. Therefore, the model could be used to investigate various pedestrian accidents and/or to improve safety regulations and vehicle front-end design for high-stature pedestrian protection.

This is a preview of subscription content, log in to check access.

Abbreviations

ACL:

anterior cruciate ligament

ATD:

anthropometric test device

CPC:

car-to-pedestrian collisions

CG:

center of gravity

Euro NCAP:

european new car assessment program

FE:

finite element

GHBMC:

global human body models consortium

PMHS:

post mortem human surrogate

LCL:

lateral collateral ligament

M50-PS:

male 50th percentile pedestrian simplified model

M95:

male 95th percentile

M95-PS:

male 95th percentile pedestrian simplified model

MCL:

medial collateral ligament

NURBS:

non-uniform rational basis spline

T1:

first thoracic vertebra

TDAS:

telemetry data acquisition system

WAD:

wrap around distance

References

  1. Arnoux, P. J., Cesari, D., Behr, M., Thollon, L. and Brunet, C. (2005). Pedestrian lower limb injury criteria evaluation: A finite element approach. Traffic Injury Prevention 6, 3, 288–297.

    Article  MATH  Google Scholar 

  2. Baker, W. A., Chowdhury, M. R. and Untaroiu, C. D. (2018a). A finite element model of an anthropomorphic test device lower limb to assess risk of injuries during vertical accelerative loading. J. Biomechanics, 81, 104–112.

    Article  Google Scholar 

  3. Baker, W. A., Chowdhury, M. R. and Untaroiu, C. D. (2018b). Validation of a booted finite element model of the WIAMan ATD lower limb in component and wholebody vertical loading impacts with an assessment of the boot influence model on response. Traffic Injury Prevention 19, 5, 549–554.

    Article  Google Scholar 

  4. Baker, W. A., Untaroiu, C. D., Crawford, D. M. and Chowdhury, M. R. (2017). Mechanical characterization and finite element implementation of the soft materials used in a novel anthropometric test device for simulating underbody blast loading. J. Mechanical Behavior of Biomedical Materials, 74, 358–364.

    Article  Google Scholar 

  5. Bolte Iv, J. H., Hines, M. H., Herriott, R. G., Mcfadden, J. D. and Donnelly, B. R. (2003). Shoulder impact response and injury due to lateral and oblique loading. Stapp Car Crash Journal, 47, 35–53.

    Google Scholar 

  6. Bolte, J. H., Hines, M. H., Mcfadden, J. D. and Saul, R. A. (2000). Shoulder response characteristics and injury due to lateral glenohumeral joint impacts. Stapp Car Crash Journal, 44, 261–280.

    Google Scholar 

  7. Bose, D., Bhalla, K. S., Untaroiu, C. D., Ivarsson, B. J., Crandall, J. R. and Hurwitz, S. (2008). Injury tolerance and moment response of the knee joint to combined valgus bending and shear loading. J. Biomechanical Engineering 130, 3, 031008.

    Article  Google Scholar 

  8. Compigne, S., Caire, Y., Quesnel, T. and Verries, J.-P. (2004). Non-injurious and injurious impact response of the human shoulder three-dimensional analysis of kinematics and determination of injury threshold. Stapp Car Crash Journal, 48, 89–123.

    Google Scholar 

  9. Euro-Ncap (2018). Pedestrian Testing Protocol Version 9.0.2. November 2017 edn. Euro NCAP.

    Google Scholar 

  10. Fredriksson, R., Rosén, E. and Kullgren, A. (2010). Priorities of pedestrian protection — A real-life study of severe injuries and car sources. Accident Analysis & Prevention 42, 6, 1672–1681.

    Article  Google Scholar 

  11. Fredriksson, R., Shin, J. and Untaroiu, C. D. (2011). Potential of pedestrian protection systems—a parameter study using finite element models of pedestrian dummy and generic passenger vehicles. Traffic Injury Prevention 12, 4, 398–411.

    Article  Google Scholar 

  12. Gayzik, F., Moreno, D., Danelson, K., Mcnally, C., Klinich, K. and Stitzel, J. D. (2012). External landmark, body surface, and volume data of a mid-sized male in seated and standing postures. Annals of Biomedical Engineering 40, 9, 2019–2032.

    Article  Google Scholar 

  13. Gayzik, F., Moreno, D., Geer, C., Wuertzer, S., Martin, R. and Stitzel, J. (2011). Development of a full body CAD dataset for computational modeling: A multi-modality approach. Annals of Biomedical Engineering 39, 10, 2568–2583.

    Article  Google Scholar 

  14. Gordon, C. C., Churchill, T., Clauser, C. E., Bradtmiller, B. and Mcconville, J. T. (1989). Anthropometric Survey of US Army Personnel: Methods and Summary Statistics 1988. DTIC Document.

  15. Han, Y., Yang, J. K., Mizuno, K. and Matsui, Y. (2012). Effects of vehicle impact velocity, vehicle front-end shapes on pedestrian injury risk. Traffic Injury Prevention 13, 5, 507–518.

    Article  Google Scholar 

  16. Iwamoto, M., Omori, K., Kimpara, H., Nakahira, Y., Tamura, A., Watanabe, I., Miki, K., Hasegawa, J. and Oshita, F. (2003). Recent Advances in THUMS: Development of Individual Internal Organs, Brain, Small Female, and Pedestrian Model. Ulm, Germany.

    Google Scholar 

  17. Kerrigan, J. R., Crandall, J. R. and Deng, B. (2007). Pedestrian kinematic response to mid-sized vehicle impact. Int. J. Vehicle Safety 2, 3, 221–240.

    Article  Google Scholar 

  18. Kerrigan, J. R., Parent, D. P., Untaroiu, C., Crandall, J. R. and Deng, B. (2009). A new approach to multibody model development: Pedestrian lower extremity. Traffic Injury Prevention 10, 4, 386–397.

    Article  Google Scholar 

  19. Koh, S.-W., Cavanaugh, J. M., Mason, M. J. and Petersen, S. A. (2005). Shoulder injury and response due to lateral glenohumeral joint impact: An analysis of combined data. Stapp Car Crash Journal, 49, 291–322.

    Google Scholar 

  20. Kothari, V. and Gangal, M. (1994). Assessment of frictional properties of some woven fabrics. Indian J. Fibre & Textile Research 19, 3, 151–155.

    Google Scholar 

  21. Lu, Y. C. and Untaroiu, C. D. (2014). A statistical geometrical description of the human liver for probabilistic occupant models. J. Biomechanics 47, 15, 3681–3688.

    Article  Google Scholar 

  22. Marth, D. R. (2002). Biomechanics of the Shoulder in Lateral Impact. Ph. D. Dissertation. Wayne State University. Detroit, Michigan, USA.

    Google Scholar 

  23. Martin, J.-L., Lardy, A. and Laumon, B. (2011). Pedestrian injury patterns according to car and casualty characteristics in France. Annals of Advanced in Automotive Medicine, 55, 137–146.

    Google Scholar 

  24. Meng, Y., Pak, W., Guleyupoglu, B., Koya, B., Gayzik, F. S. and Untaroiu, C. D. (2017). A finite element model of a six-year-old child for simulating pedestrian accidents. Accident Analysis & Prevention, 98, 206–213.

    Article  Google Scholar 

  25. NHTSA (2018). Traffic Safety Facts 2016. https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812580

  26. Okamoto, Y., Sugimoto, T., Enomoto, K. and Kikuchi, J. (2003). Pedestrian head impact conditions depending on the vehicle front shape and its construction—full model simulation. Traffic Injury Prevention 4, 1, 74–82.

    Article  Google Scholar 

  27. Petitjean, A., Trosseille, X., Yoganandan, N. and Pintar, F. A. (2015). Normalization and scaling for human response corridors and development of injury risk curves. Accidental Injury, 769–792.

  28. Putnam, J. B., Somers, J. T. and Untaroiu, C. D. (2014). Development, calibration, and validation of a head-neck complex of THOR mod kit finite element model. Traffic Injury Prevention 15, 8, 844–854.

    Article  Google Scholar 

  29. Saez, L. M., Casanova, L. J. G., Fazio, E. A. and Alvarez, A. G. (2012). Behaviour of high bumper vehicles in pedestrian scenarios with full finite element human models. Int. J. Crashworthiness 17, 1, 1–10.

    Article  Google Scholar 

  30. Schwartz, D., Guleyupoglu, B., Koya, B., Stitzel, J. D. and Gayzik, F. S. (2015). Development of a computationally efficient full human body finite element model. Traffic Injury Prevention 16, Supplement 1, S49–S56.

    Article  Google Scholar 

  31. Takahashi, Y., Kikuchi, Y., Konosu, A. and Ishikawa, H. (2000). Development and validation of the finite element model for the human lower limb of pedestrians. Stapp car Crash Journal, 44, 335–355.

    Google Scholar 

  32. Untaroiu, C., Darvish, K., Crandall, J., Deng, B. and Jenne-Tai, W. (2005). A finite element model of the lower limb for simulating pedestrian impacts. Stapp Car Crash Journal, 49, 157–181.

    Google Scholar 

  33. Untaroiu, C., Shin, J., Ivarsson, J., Crandall, J., Takahashi, Y., Akiyama, A. and Kikuchi, Y. (2007a). Pedestrian kinematics investigation with finite element dummy model based on anthropometry scaling method. Proc. 20th Int. Technical Conf. Enhanced Safety of Vehicles, Lyon, France.

    Google Scholar 

  34. Untaroiu, C. D., Crandall, J. R., Takahashi, Y., Okamoto, M., Ito, O. and Fredriksson, R. (2010a). Analysis of running child pedestrians impacted by a vehicle using rigid-body models and optimization techniques. Safety Science 48, 2, 259–267.

    Article  Google Scholar 

  35. Untaroiu, C. D., Kerrigan, J., Kam, C., Crandall, J., Yamazaki, K., Fukuyama, K., Kamiji, K., Yasuki, T. and Funk, J. (2007b). Correlation of strain and loads measured in the long bones with observed kinematics of the lower limb during vehicle-pedestrian impacts. Stapp Car Crash Journal, 51, 433–466.

    Google Scholar 

  36. Untaroiu, C. D., Meissner, M. U., Crandall, J. R., Takahashi, Y., Okamoto, M. and Ito, O. (2009). Crash reconstruction of pedestrian accidents using optimization techniques. Int. J. Impact Engineering 36, 2, 210–219.

    Article  Google Scholar 

  37. Untaroiu, C. D., Pak, W., Meng, Y., Schap, J., Koya, B. and Gayzik, S. (2018). A finite element model of a midsize male for simulating pedestrian accidents. J. Biomechanical Engineering 140, 1, 011003.

    Article  Google Scholar 

  38. Untaroiu, C. D., Putnam, J. B., Schap, J., Davis, M. L. and Gayzik, F. S. (2015). Development and preliminary validation of a 50th percentile pedestrian finite element model. Proc. ASME Int. Design Engineering Technical Conf. & Computer and Information in Engineering Conf. Boston, Massachusetts, USA.

    Google Scholar 

  39. Untaroiu, C. D., Shin, J., Crandall, J. R., Fredriksson, R., Bostrom, O., Takahashi, Y., Akiyama, A., Okamoto, M. and Kikuchi, Y. (2010b). Development and validation of pedestrian sedan bucks using finite-element simulations: A numerical investigation of the influence of vehicle automatic braking on the kinematics of the pedestrian involved in vehicle collisions. Int. J. Crashworthiness 15, 5, 491–503.

    Article  Google Scholar 

  40. Untaroiu, C. D., Yue, N. and Shin, J. (2013). A finite element model of the lower limb for simulating automotive impacts. Annals of Biomedical Engineering 41, 3, 513–526.

    Article  Google Scholar 

  41. Vavalle, N. A., Schoell, S. L., Weaver, A. A., Stitzel, J. D. and Gayzik, F. S. (2014). Application of radial basis function methods in the development of a 95th percentile male seated fea model. Stapp Car Crash Journal, 58, 361–384.

    Google Scholar 

  42. Viano, D. C. (1989). Biomechanical responses and injuries in blunt lateral impact. SAE Paper No. 892432.

  43. Watanabe, R., Katsuhara, T., Miyazaki, H., Kitagawa, Y. and Yasuki, T. (2012). Research of the relationship of pedestrian injury to collision speed, car-type, impact location and pedestrian sizes using human FE model (THUMS Version 4). Stapp Car Crash Journal, 56, 269–321.

    Google Scholar 

  44. Weiss, J. A. and Gardiner, J. C. (2001). Computational modeling of ligament mechanics. Critical Reviews in Biomedical Engineering 29, 4, 1–70.

    Google Scholar 

  45. WHO (2016). Road Traffic Injuries. World Health Organization. http://www.who.int/mediacentre/factsheets/fs358/en

  46. Yates, K. M., Lu, Y. C. and Untaroiu, C. D. (2016). Statistical shape analysis of the human spleen geometry for probabilistic occupant models. J. Biomechanics 49, 9, 1540–1546.

    Article  Google Scholar 

  47. Yates, K. M. and Untaroiu, C. D. (2018). Finite element modeling of the human kidney for probabilistic occupant models: Statistical shape analysis and mesh morphing. J. Biomechanics, 74, 50–56.

    Article  Google Scholar 

  48. Yue, N. and Untaroiu, C. D. (2014). A numerical investigation on the variation in hip injury tolerance with occupant posture during frontal collisions. Traffic Injury Prevention 15, 5, 513–522.

    Article  Google Scholar 

  49. Zegeer, C. V. and Bushell, M. (2012). Pedestrian crash trends and potential countermeasures from around the world. Accident Analysis & Prevention 44, 1, 3–11.

    Article  Google Scholar 

Download references

Acknowledgement

Funding for this study was provided by the Global Human Body Models Consortium (GHBMC). All findings and views reported in this manuscript are based on the opinions of the authors and do not necessarily represent the consensus or views of the funding organization.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Costin D. Untaroiu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pak, W., Meng, Y., Schap, J. et al. Finite Element Model of a High-Stature Male Pedestrian for Simulating Car-to-Pedestrian Collisions. Int.J Automot. Technol. 20, 445–453 (2019). https://doi.org/10.1007/s12239-019-0042-7

Download citation

Key Words

  • Finite element modeling
  • Impact biomechanics
  • Pedestrian protection