Skip to main content
Log in

Effect of Polyoxymethylene Dimethyl Ethers/Diesel Blends on Fuel Properties and Particulate Matter Oxidation Activity of A Light-Duty Diesel Engine

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

Polyoxymethylene dimethyl ethers (PODE) was blended in diesel at volume ratios of 0 %, 10 %, 20 %, and 30 % (denoted as P0, P10, P20, and P30). The experimental study was carried on an unmodified YD480Q diesel engine. An engine exhaust particle sizer was introduced to analyze the particulate matter (PM) concentration and particle size distribution of diesel engine emission. The evaporation-oxidation characteristics of the PODE/diesel blends and the effect of the fuel blends on the oxidative activity of PM were investigated by thermogravimetric analysis and Arrhenius theorem. The results showed that blending PODE in diesel improved the evaporation-oxidation characteristics of the fuel and decreased the apparent activation energy of the fuel blends. PODE played a positive role in reducing PM emissions. The particle total number concentration of P30 decreased 28.29 ~ 66.60 % and the particle total volume density decreased 54.16 ~ 80.06 % compared to diesel. The particle size distribution shifted to a smaller particle size as the PODE blending ratio was increased. The mass fraction of the volatile substances (VS) increased and the mass fraction of the dry soot (DS) decreased by employing PODE as a diesel additive. Also, the oxidation activity of VS increased as the PODE blending ratio was increased. The oxidation activity of DS climbed to the peak when the PODE blending ratio was 20 % and then decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Qudais, M., Haddad, O. and Qudaisat, M. (2000). The effect of alcohol fumigation on diesel engine performance and emissions. Energy Conversion and Management, 414, 389–399.

    Article  Google Scholar 

  • Ahn, K. (2014). The role of air pollutants in atopic dermatitis. J. Allergy and Clinical Immunology, 1345, 993–999.

    Article  Google Scholar 

  • Burger, J., Siegert, M., Ströfer, E. and Hasse, H. (2010). Poly(oxymethylene) dimethyl ethers as components of tailored diesel fuel: Properties, synthesis and purification concepts. Fuel, 8911, 3315–3319.

    Article  Google Scholar 

  • Burtscher, H. (2005). Physical characterization of particulate emissions from diesel engines: A review. J. Aerosol Science, 367, 896–932.

    Article  Google Scholar 

  • Chen, Z. H., Li, Z. J., Jiao, P. H., Gao, L. B., Zhang, W. F. and Liu, L. (2011). Micro-reaction kinetics calculation for reducing diesel NOx and PM by adsorber-reduction catalyst. Trans. Chinese Society for Agricultural Machinery, 427, 10–15.

    Google Scholar 

  • Churchill, G. V. and Srinivasan, C. A. (2017). Experimental investigations on combustion and emission characteristics of biodiesel blends in CI engine. Int. Research J. Engineering and Technology, 0401, 1523–1529.

    Google Scholar 

  • Ciajolo, A., D’Anna, A., Barbella, R., Tregrossi, A. and Violi, A. (1996). The effect of temperature on soot inception in premixed ethylene flames. Symp. (Int.) Combustion, 262, 2327–2333.

    Article  Google Scholar 

  • Gao, J. B., Ma, C. C., Tian, G. H., Chen, J. Y., Xing, S. K. and Huang, L. Y. (2018). Oxidation activity restoration of diesel particulate matter by aging in air. Energy & Fuels, 322, 2450–2457.

    Article  Google Scholar 

  • Guo, Y., He, M. G., Zhong, Q. and Zhang, Y. (2009). Mass diffusion coefficients of oxygenated fuel additives in air. Energy, 3410, 1560–1564.

    Article  Google Scholar 

  • Hao, B. (2014). Effect of Fuel Identity on the Exhaust Particles from Diesel Engine. Ph. D. Dissertation. Tianjin University. Tianjin, China.

    Google Scholar 

  • Hu, Z. Y., Yang, Q., Tan, P. Q. and Lou, D. M. (2013). Ultrafine particle number emission and size distribution of an on-used common rail diesel engine fueled with Shanghai IV diesel. J. Tongji Univ: Nat. Sci. Ed, 4111, 1721–1725.

    Google Scholar 

  • Jiao, W., Xu, C. C., Liu, Y., Guo, L., Li, J. and Liu, W. L. (2014). Research advances in diesel-alcohol blends. Acta Physica Sinica -Chinese Edition, 305, 945–956.

    Google Scholar 

  • Karin, P., Boonsakda, J., Siricholathum, K., Saenkhumvong, E., Charoenphonphanich, C. and Hanamura, K. (2016). Morphology and oxidation kinetics of ci engine’s biodiesel particulate matters on cordierite diesel particulate filters using TGA. Int. J. Automotive Technology, 181, 31–40.

    Article  Google Scholar 

  • Kweon, C. B., Foster, D. E., Schauer, J. J. and Okada, S. (2002). Detailed chemical composition and particle size assessment of diesel engine exhaust. SAE Paper No. 2002-01-2670.

    Google Scholar 

  • Laidler, K. J. (1984). The development of the Arrhenius equation. J. Chemical Education, 616, 494–498.

    Article  Google Scholar 

  • Liu, H. Y., Wang, Z., Wang, J. X., He, X., Zheng, Y. Y., Tang, Q. and Wang, J. F. (2015). Performance, combustion and emission characteristics of a diesel engine fueled with polyoxymethylene dimethyl ethers (PODE3-4)/ diesel blends. Energy, 88, 793–800.

    Article  Google Scholar 

  • Liu, H. Y., Wang, Z., Zhang, J., Wang, J. X. and Shuai, S. J. (2017a). Study on combustion and emission characteristics of Polyoxymethylene Dimethyl Ethers/diesel blends in light-duty and heavy-duty diesel engines. Applied Energy, 185Part 2, 1393–1402.

    Article  Google Scholar 

  • Liu, J. L., Wang, H., Li, Y., Zheng, Z. Q., Xue, Z. Z., Shang, H. Y. and Yao, M. F. (2016). Effects of diesel/PODE (polyoxymethylene dimethyl ethers) blends on combustion and emission characteristics in a heavy duty diesel engine. Fuel, 177, 206–216.

    Article  Google Scholar 

  • Liu, J. H., Sun, P., Huang, H., Meng, J. and Yao, X. H. (2017b). Experimental investigation on performance, combustion and emission characteristics of a commonrail diesel engine fueled with polyoxymethylene dimethyl ethers-diesel blends. Applied Energy, 202, 527–536.

    Article  Google Scholar 

  • Mei, D. Q., Zhao, X., Wang, S. L., Yuan, Y. N. and Sun, P. (2013). Thermogravimetric characteristics analysis of particulate matter of emission of divided diesel. Trans. Chinese Society of Agricultural Engineering, 2916, 50–56.

    Google Scholar 

  • Murcak, A., Karabektas, M., Ergen, G. and Hasimoglu, C. (2016). Performance and emission characteristics of a diesel engine fuelled with emulsified biodiesel-diesel fuel blends. Int. J. Automotive Engineering and Technologies, 54, 176–185.

    Article  Google Scholar 

  • Pellegrini, L., Marchionna, M., Patrini, R., Beatrice, C., Giacomo, N. D. and Guido, C. (2012). Combustion behaviour and emission performance of neat and blended polyoxymethylene dimethyl ethers in a lightduty diesel engine. Microelectronic Engineering, 875-8, 778–781.

    Google Scholar 

  • Pellegrini, L., Marchionna, M., Patrini, R. and Florio, S. (2013). Emission performance of neat and blended polyoxymethylene dimethyl ethers in an old light-duty diesel car. SAE Paper No. 2013-01-1035.

    Google Scholar 

  • Pirjola, L., Rönkkö, T., Saukko, E., Parviainen, H., Malinen, A., Alanen, J. and Saveljeff, H. (2017). Exhaust emissions of non-road mobile machine: Real-world and laboratory studies with diesel and HVO fuels. Fuel, 202, 154–164.

    Article  Google Scholar 

  • Prashant, G. K., Lata, D. B. and Joshi, P. C. (2016). Investigations on the effect of methanol blend on the combustion parameters of dual fuel diesel engine. Applied Thermal Engineering, 103, 187–194.

    Article  Google Scholar 

  • Reitz, D. R. (2013). Directions in internal combustion engine research. Combustion and Flame, 160, 1–8.

    Article  Google Scholar 

  • Richter, H. and Howard, J. B. (2000). Formation of polycyclic aromatic hydrocarbons and their growth to soot-a review of chemical reaction pathways. Progress in Energy and Combustion Science, 264-6, 565–608.

    Article  Google Scholar 

  • Rodríguezfernández, J., Oliva, F. and Vázquez, R. A. (2011). Characterization of the diesel soot oxidation process through an optimized thermogravimetric method. Energy & Fuels, 255, 2039–2048.

    Article  Google Scholar 

  • Roy, M. M., Calder, J., Wang, W., Mangad, A. and Diniz, F. C. M. (2016). Cold start idle emissions from a modern Tier-4 turbo-charged diesel engine fueled with dieselbiodiesel, diesel-biodiesel-ethanol, and diesel-biodieseldiethyl ether blends. Applied Energy, 180, 52–65.

    Article  Google Scholar 

  • Song, J. H., Alam, M. and Boehman, A. L. (2007). Impact of alternative fuels on soot properties and DPF regeneration. Combustion Science and Technology, 1799, 1991–2037.

    Article  Google Scholar 

  • Stratakisa, G. A. and Stamatelosa, A. M. (2003). Thermogravimetric analysis of soot emitted by a modern diesel engine run on catalyst-doped fuel. Combustion and Flame, 1321-2, 157–169.

    Article  Google Scholar 

  • Su, C. M. and Puls, R. W. (1999). Kinetics of trichloroethene reduction by zerovalent iron and tin_ pretreatment effect, apparent activation energy, and intermediate products. Environmental Science & Technology, 331, 163–168.

    Article  Google Scholar 

  • Sukjit, E., Herreros, J. M., Piaszyk, J., Dearn, K. D. and Tsolakis, A. (2013). Finding synergies in fuels properties for the design of renewable fuels — Hydroxylated biodiesel effects on butanol-diesel blends. Environmental Science & Technology, 477, 3535–3542.

    Article  Google Scholar 

  • Wang, C. Q., Li, Y. G., Han, D. Y., Li, D. D. and Cao, Z. B. (2015). Research progress of containing oxygen components in oxygenated diesel. Contemporary Chemical Industry, 443, 531–533.

    Google Scholar 

  • Wang, C. W., Cui, F. F. and Song, Y. (2014). Research situation and development prospect of bidiesel. China Oils and Fats, 395, 44–48.

    Google Scholar 

  • Wang, J. X., Wu, F. J., Xiao, J. H. and Shuai, S. J. (2009). Oxygenated blend design and its effects on reducing diesel particulate emissions. Fuel, 8810, 2037–2045.

    Article  Google Scholar 

  • Wang, Y., Raj, A. and Chung, S. H. (2013). A PAH growth mechanism and synergistic effect on PAH formation in counterflow diffusion flames. Combustion and Flame, 1609, 1667–1676.

    Article  Google Scholar 

  • Weng, J. Q., Shen, Y. G., Zhang, X. L. and Fan, Y. L. (2008). The corrosion wear of biodiesel on diesel engine and its mechanism analysis. Lubrication Engineering, 338, 54–57.

    Google Scholar 

  • Xia, D., Chen, G. X., Liao, Z. J., Wang, H. M., Wang, X. C. and Du, P. F. (2015). Recearch status and development tendency of ashless diesel additives. Energy Conservation Technologies, 332, 155–158.

    Google Scholar 

  • Xie, M., Ma, Z. J., Wang, Q. H., Liu, J. C. and Liu, S. H. (2017). Investigation of engine combustion and emission performance fuelled with neat PODE and PODE/diesel blend. J. Xi’an Jiaotong University, 513, 32–37, 140.

    Google Scholar 

  • Yang, H., Xinghu, L. I., Mingfei, M. U. and Xuehao, L. I. (2015). Experiments on the performances and emissions of diesel engine fuelled with diesel/polyoxymethylene dimethyl ethers blends. J. Automotive Safety and Energy, 63, 280–285.

    Google Scholar 

  • Zhang, W. G., Wei, X. D., Lin, D. and Zhu, Y. J. (2016). Experimental study on the influence of polyoxymethylene dimethyl ethers (PODE) on ultrafne particle emission of a compression ignition engine. J. Automotive Safety and Energy, 73, 330–336.

    Google Scholar 

  • Zhang, Z. H. and Balasubramanian, R. (2015). Effects of oxygenated fuel blends on carbonaceous particulate composition and particle size distributions from a stationary diesel engine. Fuel, 141, 1–8.

    Article  Google Scholar 

  • Zielinska, B., Sagebiel, J., Rogers, C. F., Kelly, K. E., Wagner, D. A., Lighty, J. S., Sarofim, A. F. and Palmer, G. (2004). Phase and size distribution of polycyclic aromatic hydrocarbons in diesel and gasoline vehicle emissions. Environmental Science & Technology, 389, 2557–2567.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixi Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Cai, Y., Shi, Y. et al. Effect of Polyoxymethylene Dimethyl Ethers/Diesel Blends on Fuel Properties and Particulate Matter Oxidation Activity of A Light-Duty Diesel Engine. Int.J Automot. Technol. 20, 277–288 (2019). https://doi.org/10.1007/s12239-019-0027-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-019-0027-6

Key Words

Navigation