Skip to main content
Log in

Injection Characteristics of Palm Methyl Ester Blended with Diesel Using Zuech’s Chamber

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

This research attempts to characterize the injection of palm biodiesel blended with diesel in a Zuech’s chamber. Thailand conventional diesel (mandated blend of biodiesel at 5 % or B5), palm biodiesel (B100) and four other biodiesel blends ratios (B20, B40, B60 and B80) were investigated with single hole injector of 140 and 200 μm diameters, injection pressure of 40 MPa to 160 MPa, constant back pressure of 4.5 MPa and energize time of 2.5 ms. The results show that increasing biodiesel blending ratios leads to longer injection delay, larger injection pressure drop, smaller injection quantity discharge coefficient (Cd) and shorter injection duration. With increasing biodiesel blending ratio, high Cavitation number from biodiesel viscosity decreases Reynolds number. Increasing injector diameter from 140 μm to 200 μm has reduced injection delay, increased fuel injection quantity, discharge coefficient and remaining injection duration. The increasing of injection pressure were improve, injection delay, injection duration, injection quantity and discharge coefficient until injection pressure 120 MPa. In addition at injection pressure over 120 MPa are decrease injection quantity and discharge coefficient, it effect form the cavitation phenomena. Increasing of viscosity, density, Bulk modulus and sound velocity were effect to increase injection delay, with reduce injection quantity, injection duration and pressure drop during injection process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

measure :

injection rate, mg/ms

ρ f :

fuel density, kg/m3

V 0 :

internal volume of zuech’s chamber, cm3

\(\frac{dp}{dt}\) :

rate of pressure change in chamber, MPa/ ms

K :

isothermal bulk modulus, MPa

p b :

back pressure in Zuech’s chamber, MPa

d v :

volume change during bulk modulus test, cm3

n Orifice :

number of orifices, hole

A :

cross-section area of orifice exit, mm2

ΔP :

difference of injection and back pressure, MPa

C d :

discharge coefficient

V average :

average of flow velocity, m/s

C v :

coefficient of velocity

D inj :

diameter of orifice exit, μm

v :

fuel viscosity, cSt

C a :

cavitation number

P i :

injection pressure, MPa

P v :

vapor pressure, MPa

P b :

back pressure, MPa

SOI :

start of injection

SOE :

start of energize

References

  • Bai, Y., Fan, L. Y., Ma, X. Z., Peng, H. L. and Song, E. Z. (2016). Effect of injector parameters on the injection quantity of common rail injection system for diesel engines. Int. J. Automotive Technology 17, 4, 576–579.

    Article  Google Scholar 

  • Battistoni, M. and Grimaldi, C. N. (2010). Analysis of transient cavitating flows in diesel injectors using diesel and biodiesel fuels. SAE Paper No. 2010-01-2245.

    Google Scholar 

  • Benajes, J., Pastor, J. V., Payri, R. and Plazas, A. H. (2004). Analysis of the influence of diesel nozzle geometry in the injection rate characteristic. J. Fluid Engineering, 126, 63–71.

    Article  Google Scholar 

  • Bergstrand, P., Persson, F., Forsth, M. and Denbratt, I. (2003). A study of the influence of nozzle orifice geometries on fuel evaporation using laser-induced exciplex fluorescence. SAE Paper No. 2003-01-1836.

    Book  Google Scholar 

  • Boehman, A. L., Morris, D. and Szybist, J. (2004). The impact of the bulk modulus of diesel fuels on fuel injection timing. Energy & Fuels 18, 6, 1877–1882.

    Article  Google Scholar 

  • Borhanipour, M., Karin, P., Tongroon, M., Chollacoop, N. and Hanamura, K. (2014). Comparison study on fuel properties of biodiesel from jatropha, palm and petroleum based diesel fuel. SAE Paper No. 2014-01-2017.

    Book  Google Scholar 

  • Catania, A. E., Ferrari, A., Manno, M. and Spessa, E. (2008). Experimental investigation of dynamics effects on multiple-injection common rail system performance experimental investigation of dynamics. J. Engineering for Gas Turbines and Power 130, 3.

    Google Scholar 

  • Dernotte, J., Hespel, C., Foucher, F., Houille, S. and Mounaim-Rousselle, C. (2012). Influence of physical fuel properties on the injection rate in a diesel injector. Fuel, 96, 153–160.

    Article  Google Scholar 

  • Desantes, J. M., Payri, R., Salvador, F. and Gimeno, J. (2003). Measurements of spray momentum for the study of cavitation in diesel injection nozzles. SAE Paper No. 2003-01-0703.

    Book  Google Scholar 

  • Freitas, S. V. D., Paredes, M. L. L., Daridon, J.-L., Lima, A. S. and Coutinho, J. A. P. (2013). Measurement and prediction of the speed of sound of biodiesel fuels. Fuel, 103, 1018–1022.

    Article  Google Scholar 

  • Han, D., Duan, Y., Wang, C., Lin, H. and Huang, Z. (2014). Experimental study on injection characteristics of fatty acid esters on a diesel engine common rail system. Fuel, 123, 19–25.

    Article  Google Scholar 

  • Hou, J., Wen, Z., Liu, Y. and Jiang, Z. (2014). Experimental study on the injection characteristics of dimethyl etherbiodiesel blends in a common-rail injection system. Proc. Institution of Mechanical Engineers, Part D: J. Automobile Engineering 228, 3, 263–271.

    Google Scholar 

  • Hiroyasu, H. and Arai, M. (1990). Structures of fuel sprays in diesel engines. SAE Paper No. 900475.

    Book  Google Scholar 

  • Ishikawa, S., Ohmori, Y., Fukushima, S., Suzuki, T., Takamura, A. and Kamimoto, T. (2000). Measurement of rate of multiple-injection in CDI diesel engines. SAE Paper No. 2000-01-1257.

    Book  Google Scholar 

  • Jaroonjitsathian, S., Akarapanjavit, N., Sa-norh, S., Inochanon, R., Wuttimongkolchai, A., Tipdecho, C., Tsuchihashi, K. and Shirakawa, H. (2009). Evaluation of 5 to 20 % biodiesel blend on heavy-duty common-rail diesel engine. SAE Paper No. 2009-01-1894.

    Book  Google Scholar 

  • Jiang, G., Zhang, Y., Wen, H. and Xiao, G. (2015). Study of the generated density of cavitation inside diesel nozzle using different fuels and nozzles. Energy Conversion and Management, 103, 208–217.

    Article  Google Scholar 

  • Jung, D., Wang, W. L., Knafl, A., Jacobs, T. J., Hu, S. J. and Assanis, D. N. (2008). Experimental investigation of abrasive flow machining effects on injector nozzle geometries, engine performance, and emissions in a di diesel engine. Int. J. Automotive Technology 9, 1, 9–15.

    Article  Google Scholar 

  • Keat Teong, L. and Cynthia, O. B. (2013). Environmental Sustainability Assessment of Biofuel Production from Oil Palm Biomass. Springer Science Business Media. Singapore.

    Google Scholar 

  • Hoekman, S. K. and Robbins, C. (2012). Review of the effects of biodiesel on NOx emissions. Fuel Processing Technology, 96, 237–249.

    Article  Google Scholar 

  • Knefel, T. (2011). The evaluation of the characteristic injection times of a multiple fuel dose. J. KONES Powertrain and Transport 18, 2, 205–213.

    Google Scholar 

  • Li, Y., Guo, H., Ma, X., Wang, J.-X. and Xu, H. (2014). Experimental study of effect of nozzle diameter on nearfield spray behavior of diesel sprays in non-evaporating conditions. SAE Paper No. 2014-01-1405.

    Google Scholar 

  • Lim, O. T. and Lee, S. J. (2016). Influence of nozzle hole diameter and orifice diameter on dme spray to get the similar heat value with diesel spray using the constant volume chamber. Int. J. Automotive Technology 17, 6, 1023–1031.

    Article  Google Scholar 

  • Moon, S., Tsujimura, T., Gao, Y., Park, S., Wang, J., Kurimoto, N., Nishijima, Y. and Oguma, M. (2013). Biodiesel effects on transient needle motion and nearexit flow characteristics of a high-pressure diesel injector. Int. J. Engine Research 15, 4, 504–518.

    Article  Google Scholar 

  • Pandey, R. K., Rehman, A. and Sarviya, R. M. (2012). Impact of alternative fuel properties on fuel spray behavior and atomization. Renewable and Sustainable Energy Reviews 16, 3, 1762–1778.

    Article  Google Scholar 

  • Payri, F., Bermudez, V., Payri, R. and Salvador, F. J. (2004a). The influence of cavitation on the internal flow spray characteristics in diesel injection nozzle. Fuel 83, 4–5, 419-431.

    Article  Google Scholar 

  • Payri, R., Molina, S., Salvador, F. J. and Gimeno, J. (2004b). A study the relation between nozzle geometry internal flow and spray characteristic in injection systems. KSME Int. J. 18, 7, 1222–1235.

    Article  Google Scholar 

  • Payri, R., García, J. M., Salvador, F. J. and Gimeno J. (2005). Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel 84, 5, 551–561.

    Article  Google Scholar 

  • Payri, R., Salvador, F. J., Gimeno, J. and de la Morena, J. (2009). Study of cavitation phenomena based on a technique for visualizing bubbles in a liquid pressurized chamber. Int. J. Heat and Fluid Flow 30, 4, 768–777.

    Article  Google Scholar 

  • Plamondon, E. and Seers, P. (2014). Development of a simplified dynamic model for a piezoelectric injector using multiple injection strategies with biodiesel/dieselfuel blends. Applied Energy, 131, 411–424.

    Article  Google Scholar 

  • Pulkrabek, W. W. (2003). Engineering Fundamentals of the Internal Combustion Engine. 2nd edn. Prentice Hall. New Jersey, USA.

    Google Scholar 

  • Qin, J.-R., Dan, T., Lai, M.-C., Savonen, C., Schwartz, E. and Brkyzik, W. (1999). Correlating the diesel spray behavior to nozzle design. SAE Paper No. 1999-01-3555.

    Book  Google Scholar 

  • Salvador, F. J., Gimeno, J., De la Morena, J. and Carreres, M. (2012). Using one-dimensional modeling to analyze the influence of the use of biodiesels on the dynamic behavior of solenoid-operated injectors in common rail systems: Results of the simulations and discussion. Energy Conversion and Management 54, 1, 122–132.

    Article  Google Scholar 

  • Salvador, F. J., Martínez-López, J., Romero, J.-V. and Roselló, M.-D. (2011). Influence of biofuels on the internal flow in diesel injector nozzles. Mathematical and Computer Modelling 54, 7–8, 1699-1705.

    Article  MathSciNet  MATH  Google Scholar 

  • Schmidt, D. P. and Corradini, M. L. (2001). The internal flow of diesel fuel injector nozzles: A review. Int. J. Engine Research 2, 1, 1–22.

    Article  Google Scholar 

  • Siriwardhana, M., Opathella, G. K. C. and Jha, M. K. (2009). Bio-diesel: Initiatives, potential and prospects in Thailand: A review. Energy Policy 37, 2, 554–559.

    Article  Google Scholar 

  • Siano, D. (2010). Fuel Injection. 1st edn. SciYo. Rijeka, Croatia.

    Book  Google Scholar 

  • Suh, H. K., Park, S. H. and Lee, C. S. (2008). Experiment investigation of nozzle flow characteristic for diesel and biodiesel. Int. J. Automotive Technology 9, 2, 217–224.

    Article  Google Scholar 

  • Som, S., Longman, D. E., Ramírez, A. I. and Aggarwal, S. K. (2010). A comparison of injector flow and spray characteristics of biodiesel with petrodiesel. Fuel 89, 12, 4014–4024.

    Article  Google Scholar 

  • Takiran, Ö. O. and Ergeneman, M. (2011). Experimental study on diesel spray characteristic and auto ignition process. J. Combustion, 2011, 528126.

    Google Scholar 

  • Tinprabath, P., Hespel, C., Chanchaona, S. and Foucher, F. (2013). Influence of biodiesel and diesel fuel blends on the injection rate and spray injection in non-vaporizing conditions. SAE Paper No. 2013-24-0032.

    Book  Google Scholar 

  • Topaiboul, S. and Chollacoop, N. (2010). Biodiesel as a lubricity additive for ultra low sulfur diesel. Songklanakarin. J. Science and Technology 32, 2, 153–156.

    Google Scholar 

  • Tziourtzioumis, D. and Stamatelos, A. (2012). Effects of a 70 % biodiesel blend on the fuel injection system operation during steady-state and transient performance of a common rail diesel engine. Energy Conversion and Management, 60, 56–67.

    Article  Google Scholar 

  • Nurick, W. H. (1976). Orifice cavitation and it effect on spray mixing. J. Fluids Engineering 98, 4, 681–687.

    Article  Google Scholar 

  • Seykens, X. L. J., Somers, L. M. T. and Baert, R. S. G. (2004). Modelling of common rail fuel injection system and influence of fluid properties on injection process. Proc. VAFSEP, Dublin, Ireland.

    Google Scholar 

  • Ubertini, S. (2004). Injection pressure fluctuations model applied to a multidimensional code for diesel engines simulation. ASME 7th Biennial Conf. Engineering Systems Design and Analysis, 437–445.

    Google Scholar 

  • Zhong, W., He, Z., Wang, Q. and Jiang, Z. (2013). Investigation of the cavitating flow in injector nozzles for diesel and biodiesel. AIP Conf. Proc. 1547, 40, Xi'an, Shaanxi Province, China.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinda Charoenphonphanich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srichai, P., Ewphun, PP., Charoenphonphanich, C. et al. Injection Characteristics of Palm Methyl Ester Blended with Diesel Using Zuech’s Chamber. Int.J Automot. Technol. 19, 535–545 (2018). https://doi.org/10.1007/s12239-018-0051-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-018-0051-y

Key words

Navigation