Origin and Distribution of Total Organic Matter and Aliphatic Hydrocarbons in Sedimentary Fractions of a Highly Urbanized, Tropical Estuary

Abstract

This study investigated the distribution and origin of organic carbon (OC) and aliphatic hydrocarbons (AHs) in sand (≥ 63 μm) and mud (< 63 μm) fractions of the Pina Sound (NE Brazil). Sedimentary OC and AHs were characterized using elemental [(C/N)a ratio], isotopic (δ13C), and molecular (AHs diagnostic ratio) proxies. On a dry weight basis, the average proportions of OC and AH contents in the mud fraction were 88 and 96%, respectively. The distribution of OC in the mud fraction was regulated by inputs from aquatic sources, while in the sand fraction, the distribution was associated with sedimentary mud contents. This reflects the hydrodynamic control on the deposition of low-density suspended particles. The mud fraction contained OC derived from aquatic producers, bacteria, and sewage while plant fragments were prevalent in the sand fraction. Sewage is a major source of oil-derived AHs in the Pina Sound. The mud fraction exhibited a high (> 100 μg/g dw) concentration of the unresolved complex mixture and a high proportion (31%) of petrogenic n-alkanes. Mud-associated pollutants can be exported to adjacent continental shelf. Geochemical analyses in size-fractionated sediments of the Pina Sound proved to be a useful procedure for better understanding estuarine OC dynamics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ahrens, M.J., and C.V. Depree. 2004. Inhomogeneous distribution of polycyclic aromatic hydrocarbons in different size and density fractions of contaminated sediment from Auckland harbour, New Zealand: An opportunity for mitigation. Marine Pollution Bulletin 48 (3-4): 341–350.

    CAS  Article  Google Scholar 

  2. Anderson, M.J. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.

    Google Scholar 

  3. Anderson, M.J. 2006. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62 (1): 245–253.

    Article  Google Scholar 

  4. Andrews, J.E., G. Samways, and G.B. Shimmield. 2008. Historical storage budgets of organic carbon, nutrient and contaminant elements in saltmarsh sediments: Biogeochemical context for managed realignment, Humber estuary, UK. Science of the Total Environment 405 (1-3): 1–13.

    CAS  Article  Google Scholar 

  5. Badewien, T., A. Vogts, and J. Rullkötter. 2015. n-Alkane distribution and carbon stable isotope composition in leaf waxes of C3 and C4 plants from Angola. Organic Geochemistry 89–90: 71–79.

    Article  CAS  Google Scholar 

  6. Bao, R., C. Mcintyre, M. Zhao, C. Zhu, S. Kao, and T.I. Eglinton. 2016. Widespread dispersal and aging of organic carbon in shallow marginal seas. Geology 44 (10): 791–794.

    CAS  Article  Google Scholar 

  7. Bao, R., T.M. Blattmann, C. Mcintyre, M. Zhao, and T.I. Eglinton. 2019. Relationships between grain size and organic carbon 14C heterogeneity in continental margin sediments. Earth and Planetary Science Letters 505: 76–85.

    CAS  Article  Google Scholar 

  8. Barbosa, C.F., and K. Suguio. 1999. Biosedimentary facies of a subtropical microtidal estuary-an example from southern Brazil. Journal of Sedimentary Research 69 (3): 576–587.

    CAS  Article  Google Scholar 

  9. Blott, S.J., and K. Pye. 2001. Gradistat: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms 26 (11): 1237–1248.

    Article  Google Scholar 

  10. Blumer, M., and J. Sass. 1972. Indigenous and petroleum-derived hydrocarbons in a polluted sediment. Marine Pollution Bulletin 3 (6): 92–94.

    Article  Google Scholar 

  11. Blumer, M., R.R.L. Guillard, and T. Chase. 1971. Hydrocarbons of marine phytoplankton. Marine Biology 8 (3): 183–189.

    CAS  Article  Google Scholar 

  12. Bock, M.J., and L.M. Mayer. 2000. Mesodensity organo-clay associations in a near-shore sediment. Marine Geology 163 (1-4): 65–75.

    CAS  Article  Google Scholar 

  13. Bouillon, S., R.M. Connolly, D.P. Gillikin, E. Wolanski, and D. McLusky. 2011. Use of stable isotopes to understand food webs and ecosystem functioning in estuaries. In Treatise on estuarine and coastal science, ed. E. Wolanski and D.S. McLusky, 143–173. Waltham: Academic Press.

    Google Scholar 

  14. Bourbonniere, R.A., and P.A. Meyers. 1996. Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnology and Oceanography 41 (2): 352–359.

    Article  Google Scholar 

  15. Bray, E.E., and E.D. Evans. 1961. Distribution of n-paraffins as a clue to recognition of source beds. Geochimica et Cosmochimica Acta 22: 2–15.

    CAS  Article  Google Scholar 

  16. Bush, R.T., and F.A. McInerney. 2013. Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy. Geochimica et Cosmochimica Acta 117: 161–179.

    CAS  Article  Google Scholar 

  17. Canuel, E.A., and A.K. Hardison. 2016. Sources, ages, and alteration of organic matter in estuaries. Annual Review of Marine Science 8 (1): 409–434.

    Article  Google Scholar 

  18. Carreira, R.S., A.L.R. Wagener, J.W. Readman, T.W. Fileman, and S.A. Macko. 2002. Changes in the sedimentary organic carbon pool of a fertilized tropical estuary, Guanabara Bay, Brazil: an elemental, isotopic and molecular marker approach. Marine Chemistry 79 (3-4): 207–227.

    CAS  Article  Google Scholar 

  19. Chevalier, N., N. Savoye, S. Dubois, M.L. Lama, V. David, P. Lecroart, K. Ménach, and H. Budzinski. 2015. Precise indices based on n-alkane distribution for quantifying sources of sedimentary organic matter in coastal systems. Organic Geochemistry 88: 69–77.

    CAS  Article  Google Scholar 

  20. Clark, R.C., and M. Blumer. 1967. Distribution of n-paraffins in marine organisms and sediment. Limnology and Oceanography 12 (1): 79–87.

    CAS  Article  Google Scholar 

  21. Clarke, K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18 (1): 117–143.

    Article  Google Scholar 

  22. Clarke, K.R., and R.M. Warwick. 2001. Change in marine communities: an approach to statistical analysis and interpretation. 2nd ed. Plymouth: Plymouth Marine Laboratory.

    Google Scholar 

  23. Colombo, J.C., E. Pelletier, C. Brochu, M. Khalil, and J.A. Catoggio. 1989. Determination of hydrocarbon sources using n-alkane and polyaromatic hydrocarbon distribution indexes. Case study: Rio de la Plata Estuary, Argentina. Environmental Science & Technology 23: 888–894.

    CAS  Article  Google Scholar 

  24. Commendatore, M., J.L. Esteves, and J.C. Colombo. 2000. Hydrocarbons in costal sediments of Patagonia, Argentina. Levels and probable sourses. Marine Pollution Bulletin 11: 989–998.

    Article  Google Scholar 

  25. Coplen, T.B. 2011. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Communications in Mass Spectrometry 25 (17): 2538–2560.

    CAS  Article  Google Scholar 

  26. Costa, B.V.M., M.Z. Moreira, R.F. Bastos, and G.T. Yogui. 2021. Distribution and origin of sedimentary organic matter in an eutrophic estuary: Pina Sound – NE Brazil. Annals of the Brazilian Academy of Science 93(1):e20190638. 

  27. Derrien, M., L. Yang, and J. Hur. 2017. Lipid biomarkers and spectroscopic indices for identifying organic matter sources in aquatic environments: A review. Water Research 112: 58–71.

    CAS  Article  Google Scholar 

  28. Didyk, B.M., B.R.T. Simoneit, S.C. Brassell, and G. Eglinton. 1978. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature 272 (5650): 216–222.

    CAS  Article  Google Scholar 

  29. Ertel, J.R., and J.I. Hedges. 1985. Sources of sedimentary humic substances: Vascular plant debris. Geochimica et Cosmochimica Acta 49 (10): 2097–2107.

    CAS  Article  Google Scholar 

  30. Fagerbakke, K.M., M. Heldal, and S. Norland. 1996. Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and cultured bacteria. Aquatic Microbial Ecology 10: 15–27.

    Article  Google Scholar 

  31. Farrington, J.W., and J.G. Quinn. 1973. Petroleum hydrocarbons in Narragansett Bay in sediments and clams. Estuarine and Coastal Marine Science I 1 (1): 71–79.

    CAS  Article  Google Scholar 

  32. Feitosa, F.A.N., F.C.R. Nascimento, and K.M.P. Costa. 1999. Distribuição espacial e temporal da Biomassa Fitoplanctônica relacionada com Parâmetros Hidrológicos na Bacia do Pina (Recife – PE). Tropical Oceanography 27: 1–13.

    Google Scholar 

  33. Ferreira, A.C., and L.D. Lacerda. 2016. Degradation and conservation of Brazilian mangroves, status and perspectives. Ocean & Coastal Management 125: 38–46.

    Article  Google Scholar 

  34. Filho, P.J.S., E.M. Böhm, G.M.B. Böhm, G.O. Montenegro, L.A. Silveira, and G.R. Betemps. 2017. Determination of hydrocarbons transported by urban runoff in sediments of São Gonçalo Channel (Pelotas – RS, Brazil). Marine Pollution Bulletin 114 (2): 1088–1095.

    Article  CAS  Google Scholar 

  35. Flemming, B.W. 2000. A revised textural classification of gravel-free muddy sediments on the basis of ternary diagrams. Continental Shelf Research 20 (10-11): 1125–1137.

    Article  Google Scholar 

  36. Flores Montes, M.J., J.G. Paulo, G.A. Nascimento Filho, F.L. Gaspar, F.A. Feitosa, A.C. Santos Junior, T.N.F. Batista, R.K. Travassos, and M.E. Pitanga. 2011. The trophic status of an urban estuarine complex in Northeast Brazil. Journal of Coastal Research 64: 408–411.

    Google Scholar 

  37. Gao, X., and S. Chen. 2008. Petroleum pollution in surface sediments of Daya Bay, South China, revealed by chemical fingerprinting of aliphatic and alicyclic hydrocarbons. Estuarine, Coastal and Shelf Science 80 (1): 95–102.

    CAS  Article  Google Scholar 

  38. Gearing, J.N. 2013. The use of stable isotope ratios for tracing the nearshore-offshore exchange of organic matter. In Coastal-offshore ecosystem interactions. Lecture notes on coastal and estuarine studies series, ed. B.O. Janson, 69–101. Berlim: Springer.

    Google Scholar 

  39. Gireeshkumar, T.R., P.M. Deepulal, and N. Chandramohanakumar. 2013. Distribution and sources of sedimentary organic matter in a tropical estuary, south west coast of India (Cochin estuary): A baseline study. Marine Pollution Bulletin 66 (1-2): 239–245.

    CAS  Article  Google Scholar 

  40. Glasner, C., L.P. Souza-Santos, G.T. Yogui, A.S. Moraes, and C.A.F. Schettini. 2018. Use of Tisbe biminiensis nauplii in ecotoxicological tests and geochemical analyses to assess the sediment quality of a tropical urban estuary in northeastern Brazil. Marine Pollution Bulletin 137.

  41. Gough, M., and S. Rowland. 1990. Characterization of unresolved complex mixtures of hydrocarbons from lubricating oil feedstocks. Nature 344 (6267): 648–650.

    CAS  Article  Google Scholar 

  42. He, B., M. Dai, W. Huang, Q. Liu, H. Chen, and L. Xu. 2010. Sources and accumulation of organic carbon in the Pearl River estuary surface sediment as indicated by elemental, stable carbon isotopic, and carbohydrate compositions. Biogeosciences 7 (10): 3343–3362.

    CAS  Article  Google Scholar 

  43. He, D., K. Z, X. Cui, J. Tang, and Y. Sun. 2018. Spatio temporal variability of hydrocarbons in surface sediments from an intensively human-impacted Xiaoqing River-Laizhou Bay system in the eastern China: Occurrence, compositional profile and source apportionment. Science of the Total Environment 645: 1172–1182.

    CAS  Article  Google Scholar 

  44. Hedges, J.I., and P.E. Hare. 1987. Amino acid adsorption by clay minerals in distilled water. Geochimica et Cosmochimica Acta 51 (2): 255–259.

    CAS  Article  Google Scholar 

  45. Hedges, J.I., and J.H. Stern. 1984. Carbon and nitrogen determinations of carbonate-containing solids. Limnology and Oceanography 29 (3): 657–663.

    CAS  Article  Google Scholar 

  46. IBGE. 2019. Population census. Instituto Brasileiro de Geografia e Estatística. Available at: http://www.ibge.gov.br.

  47. Jeng, W.L. 2006. Higher plant n-alkane average chain length as an indicator of petrogenic hydrocarbon contamination in marine sediments. Marine Chemistry 102 (3-4): 242–251.

    CAS  Article  Google Scholar 

  48. Kaiser, H.F. 1970. A second generation little jiffy. Psychometrika 35 (4): 401–415.

    Article  Google Scholar 

  49. Keil, R.G., E. Tsamakis, C.B. Fuh, J.C. Giddings, and J.I. Hedges. 1994. Mineralogical and textural controls on the organic composition of coastal marine sediments: Hydrodynamic separation using SPLITT-fractionation. Geochimica et Cosmochimica Acta 58 (2): 879–893.

    CAS  Article  Google Scholar 

  50. Kennedy, M.J., and T. Wagner. 2011. Clay mineral continental amplifier for marine carbon sequestration in a greenhouse ocean. Proceedings of the National Academy of Science of the United States of America 108 (24): 9776–9781.

    CAS  Article  Google Scholar 

  51. Killops, S.D., and M.A.H.A. Al-Juboori. 1990. Characterisation of the unresolved complex mixture (UCM) in the gas chromatograms of biodegraded petroleums. Organic Geochemistry 15 (2): 147–160.

    CAS  Article  Google Scholar 

  52. Li, S., J. Cao, S. Hu, and G. Luo. 2015. Characterization of compounds in unresolved complex mixtures (UCM) of a Mesoproterzoic shale by using GC×GC-TOFMS. Marine and Petroleum Geology 66: 791–800.

    CAS  Article  Google Scholar 

  53. Liu, Z., D. Breecker, L.M. Mayer, and J. Zhong. 2013. Composition of size-fractioned sedimentary organic matter in coastal environments is affected by difference in physical forcing strength. Organic Geochemistry 60: 20–32.

    CAS  Article  Google Scholar 

  54. Liu, Y., J. Xu, W. Chen, and Y. Li. 2017. Effects of short-term weathering on the stable carbon isotope compositions of crude oils and fuel oils. Marine Pollution Bulletin 119 (1): 238–244.

    CAS  Article  Google Scholar 

  55. Maciel, D.C., B.V.M. Costa, L.P. Souza-Santos, J.R.B. Souza, and E. Zanardi-Lamardo. 2015a. Avaliação da toxicidade dos sedimentos do sistema estuarino do rio Capibaribe (Pernambuco, Brasil) utilizando o copépodo bentônico Tisbe biminiensis Volkmann Rocco (1973). Tropical Oceanography 43: 26–37.

    Article  Google Scholar 

  56. Maciel, D.C., J.R.B. Souza, S. Taniguchi, M.C. Bícego, and E. Zanardi-Lamardo. 2015b. Sources and distribution of polycyclic aromatic hydrocarbons in a an urbanized tropical estuary and adjacent shelf, northeast of Brazil. Marine Pollution Bulletin 101 (1): 429–433.

    CAS  Article  Google Scholar 

  57. Maciel, D.C., J.R.B. Souza, S. Taniguchi, M.C. Bícego, C.A.F. Schettini, and E. Zanardi-Lamardo. 2016. Hydrocarbons in sediments along a tropical estuary-shelf transition area: Sources and spatial distribution. Marine Pollution Bulletin 113. Elsevier Ltd: 566–571.

    CAS  Article  Google Scholar 

  58. Martins, C.C., C.B. Marcia, R.C.L. Figueira, J.L.F. Angelli, T. Combi, W.C. Gallice, A.V. Mansur, E. Nardes, M.L. Rocha, E. Wisnieski, L.M.M. Ceschim, and A.P. Ribeiro. 2012. Multi-molecular markers and metals as tracers of organic matter inputs and contamination status from an environmental protection area in the SW Atlantic (Laranjeiras Bay, Brazil). Science of the Total Environment 417–418: 158–168.

    Article  CAS  Google Scholar 

  59. Marzi, R., B.E. Torkelson, and R.K. Olson. 1993. A revised carbon preference index. Organic Geochemistry 20 (8): 1303–1306.

    CAS  Article  Google Scholar 

  60. Mayer, L.M. 1994. Surface area control of organic carbon accumulation in continental shelf sediments. Geochimica et Cosmochimica Acta 58(4): 1271–1284.

  61. Mayer, L.M., P.T. Rahaim, W. Guerin, S.A. Macko, L. Watling, and F.E. Anderson. 1985. Biological and granulometric controls on sedimentary organic matter of an intertidal mudflat. Estuarine, Coastal and Shelf Science 20 (4): 491–503.

    CAS  Article  Google Scholar 

  62. Megens, L., J. Plicht, J.W. Leeuw, and F. Smedes. 2002. Stable carbon and radiocarbon isotope compositions of particle size fractions to determine origins of sedimentary organic matter in an estuary. Organic Geochemistry 33 (8): 945–952.

    CAS  Article  Google Scholar 

  63. Meyers, P.A. 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology 114 (3-4): 289–302.

    CAS  Article  Google Scholar 

  64. Middelburg, J.J., and J. Nieuwenhuize. 1998. Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde estuary. Marine Chemistry 60 (3-4): 217–225.

    CAS  Article  Google Scholar 

  65. Nascimento, F.C.R., K. Muniz, F.A.N. Feitosa, J.P. Araújo, R.M.S. Silva, G.S. Silva, and M.J. Flores-Montes. 2003. Disponibilidade Nutricional da Bacia do Pina e Rio Tejipió (Recife-PE-Brasil) em Relação aos Nutrientes e Biomassa Primária (Setembro/2000). Tropical Oceanography 31: 149–169.

    Article  Google Scholar 

  66. Nguyen, U.T., S.A. Lincoln, A.G.V. Juárez, M. Schedler, J.L. Macalady, R. Muller, and K.H. Freeman. 2018. The influence of pressure on crude oil biodegradation in shallow and deep Gulf of Mexico sediments. PLoS One 13: 1–15.

    Google Scholar 

  67. Nwachukwu, J.I., and C. Barker. 1985. Organic matter: Size fraction relationships for recent sediments from the Orinoco Delta, Venezuela. Marine and Petroleum Geology 2 (3): 202–209.

    CAS  Article  Google Scholar 

  68. Ogrinc, N., G. Fontolan, J. Faganeli, and S. Covelli. 2005. Carbon and nitrogen isotope compositions of organic matter in coastal marine sediments (the Gulf of Trieste, N Adriatic Sea): Indicators of sources and preservation. Marine Chemistry 95 (3-4): 163–181.

    CAS  Article  Google Scholar 

  69. Oliveira, T.S., R.L. Barcellos, C.A.F. Schettini, and P.B. Camargo. 2014. Modern sedimentary processes and the distribution of organic matter in a tropical estuarine system, Recife, PE, Brazil. Journal of Integrated Coastal Zone Management 14: 399–411.

    Google Scholar 

  70. Pejrup, M. 1988. The triangular diagram used for classification of estuarine sediments: A new approach. In Tidal-influenced sedimentary environments and facies, ed. P.L. de Boer, A. van Gelder, and S.D. Nio, 289–300. Dordrecht: Reidel.

    Google Scholar 

  71. Porto do Recife. 2020. Frequência de navios (2010–2019). Available on: http://www.portodorecife.pe.gov.br/. Accessed in: 12 March 2020.

  72. Readman, J.W., G. Fillmann, I. Tolosa, J. Bartocci, J.P. Villeneuve, C. Catinni, and L.D. Mee. 2002. Petroleum and PAH contamination of the Black Sea. Marine Pollution Bulletin 44 (1): 48–62.

    CAS  Article  Google Scholar 

  73. Resurreição, M.G., J.Z.O. Passavante, and S.J. Macêdo. 1996. Estudo da Plataforma Continental na Área do Recife (Brasil): Variação Sazonal da Biomassa Fitoplanctônica (08o 03 38 Lat.S; 34o 42 28 A 34o 52 00 Long.W). Tropical Oceanography 24: 39–59.

    Article  Google Scholar 

  74. Rezende, C.E., W.C. Pfeiffer, L.A. Martinelli, E. Tsamakis, J.I. Hedges, and R.G. Keil. 2010. Lignin phenols used to infer organic matter sources to Sepetiba Bay – RJ, Brasil. Estuarine, Coastal and Shelf Science 87 (3): 479–486.

    CAS  Article  Google Scholar 

  75. Rontani, J.F., and P. Bonin. 2011. Production of pristane and phytane in the marine environment: Role of prokaryotes. Research in Microbiology 162: 924–933.

    Article  CAS  Google Scholar 

  76. Scalan, R.S., and J.E. Smith. 1970. An improved measure of the odd-even predominance in the normal alkanes of sediment extracts and petroleum. Geochimica et Cosmochimica Acta 34 (5): 611–620.

    CAS  Article  Google Scholar 

  77. Schettini, C.A.F., J.B. Miranda, A.V. Levinson, E.C. Truccolo, and E.C. Domingues. 2016. The circulation of the lower Capibaribe estuary (Brazil) and its implications for the transport of scalars. Brazilian Journal of Oceanography 64 (3): 263–276.

    Article  Google Scholar 

  78. Silva, F.B., J.F. Silva, R.S. Bezerra, and P.J.P. Santos. 2017. Are biochemical composition parameters of sediment good tools for assessing the environmental quality of estuarine areas in tropical systems? Journal of the Marine Biological Association of the United Kingdom: 1–10.

  79. Simoneit, B.R.T., and J.N.C. Robinson. 1990. An assessment of the origin and composition of higher molecular weight organic matter in aerosols over Amazonia. Chemosphere 21 (10-11): 1285–1301.

    CAS  Article  Google Scholar 

  80. Somerfield, P.J., V.G. Fonseca-Genevois, A.C.L. Rodrigues, F.J.V. Castro, and G.A.P. Santos. 2003. Factors affeting meiofuna community, struture in the Pina Basin, an a urbanized embayment on the coast of Pernambuco, Brazil. Journal of the Marine Biological Association of the United Kingdom 83 (6): 1209–1213.

    Article  Google Scholar 

  81. Sutilli, M., T. Combi, M. R. D. Garcia, C. C. Martins. 2020. One century of historical deposition and flux of hydrocarbons in a sediment core from a South Atlantic RAMSAR subtropical estuary. Science of The Total Environment 706:136017.

  82. Thompson, S., and G. Eglinton. 1978a. The fractionation of a recent sediment for organic geochemical analysis. Geochimica et Cosmochimica Acta 42 (2): 199–207.

    CAS  Article  Google Scholar 

  83. Thompson, S., and G. Eglinton. 1978b. Composition and sources of pollutant hydrocarbons in the Severn estuary. Marine Pollution Bulletin 9 (5): 133–136.

    CAS  Article  Google Scholar 

  84. Thornton, S.F., and J. McManus. 1994. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: Evidence from the Tay estuary, Scotland. Estuarine, Coastal and Shelf Science 38 (3): 219–233.

    CAS  Article  Google Scholar 

  85. UNEP. 1992. Determination of petroleum hydrocarbon in sediments. Reference methods for marine pollution studies. United Nations Environment Programme.

  86. Volkman, J.K., and J.R. Maxwell. 1986. Acyclic isoprenoids as biological markers. In Biological markers in the sedimentary record, ed. R.B. Johns, 1–46. Amsterdam: Elsevier.

    Google Scholar 

  87. Volkman, J.K., D.G. Holdsworth, G.P. Neill, and H.J. Bavor Jr. 1992. Identification of natural, anthropogenic and petroleum hydrocarbons in aquatic sediments. Science of the Total Environment 112 (2-3): 203–219.

    CAS  Article  Google Scholar 

  88. Wang, J., S.S.H. Ho, J. Cao, R. Huang, J. Zhou, Y. Zhao, H. Xu, et al. 2015. Characteristics and major sources of carbonaceous aerosols in PM2.5 from Sanya, China. Science of the Total Environment 530–531: 110–119.

    Article  CAS  Google Scholar 

  89. Wang, X. C., Y. X. Zhang, and R. F. Chen. 2001. Distribution and Partitioning of Polycyclic Aromatic Hydrocarbons (PAHs) in Different Size Fractions in Sediments from Boston Harbor, United States. Marine Pollution Bulletin 42(11):1139–1149.

  90. White, H.K., L. Xu, P. Hartmann, J.G. Quinn, and C.M. Reddy. 2013. Unresolved complex mixture (UCM) in coastal environments is derived from fossil sources. Environmental Science and Technology 47 (2): 726–731.

    CAS  Article  Google Scholar 

  91. Xavier, D.A., C.A. Schettini, E.J. França, R.C. Figueira, and R.L. Barcellos. 2017. Determination of geochemical background values on a tropical estuarine system in a densely urban area. Case study: Capibaribe estuary, Northeastern Brazil. Marine Pollution Bulletin 123: 381–386.

  92. Yogui, G.T., S. Taniguchi, J. Silva, D.A. Miranda, and R.C. Montone. 2018. The legacy of man-made organic compounds in surface sediments of Pina Sound and Suape estuary, northeastern Brazil. Brazilian Journal of Oceanography 66 (1): 58–72.

    Article  Google Scholar 

  93. Zanardi-Lamardo, E., A.S.C. Nóbrega, R.H.A. Santos, and D.C. Maciel. 2016. Fontes e níveis de contaminação do Sistema Estuarino do Rio Capibaribe (Pernambuco/Brasil). Tropical Oceanography 44: 118–131.

    Article  Google Scholar 

  94. Zhang, J.H., Z.H. Feng, W. Fang, Q.L. Huo, K. Zhang, J.K. Li, H.S. Zeng, and B.W. Zhang. 2014. Crude-oil hydrocarbon composition characteristics and oil viscosity prediction in the northern Songliao Basin. Science China Earth Sciences 57 (2): 297–312.

    CAS  Article  Google Scholar 

  95. Zhang, J., S. Lu, J. Li, P. Zhang, H. Xue, X. Zhao, and L. Xie. 2017. Adsorption Properties of Hydrocarbons (n-Decane, Methyl Cyclohexane and Toluene) on Clay Minerals: An Experimental Study. Energies 10 (10): 1586.

    Article  CAS  Google Scholar 

  96. Zhang, C., J. Lu, and J. Wu. 2019. Adsorptive removal of polycyclic aromatic hydrocarbons by detritus of green tide algae deposited in coastal sediment. Science of the Total Environment 670: 320–327.

    CAS  Article  Google Scholar 

  97. Zhang, S., C. Liang, and W. Xian. 2020. Spatial and temporal distributions of terrestrial and marine organic matter in the surface sediments of the Yangtze River estuary. Continental Shelf Research 203: 104158.

    Article  Google Scholar 

Download references

Funding

BVMC was funded by the Brazilian National Research Council (CNPq, Grant No. 141146/2014-1). PJPS acknowledges a research fellowship (Grant No. 507274/2010-5) from CNPq. GTY is funded by CNPq (Grant No. 310554/2019-5). Chemical analyses were partially funded by CNPq (Grant No. 141146/2014-1) and FACEPE Multiusuários (Grant No. APQ-0388-1.08/10). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) Finance Code 001. We also thank Rebecca N Umeed for English language revision.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bruno V. M. da Costa.

Additional information

Communicated by Marco Bartoli

Supplementary Information

ESM 1

Odd-to-even predominance (OEP) curves for n-alkanes extracted from sand (a) and mud (b) sediment fractions. Open circles depict the OEP values in each sample while filled triangles represent median OEP for n-alkanes containing 17 to 35 carbon atoms. (PDF 354 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

da Costa, B.V.M., Santos, P.J.P. & Yogui, G.T. Origin and Distribution of Total Organic Matter and Aliphatic Hydrocarbons in Sedimentary Fractions of a Highly Urbanized, Tropical Estuary. Estuaries and Coasts (2021). https://doi.org/10.1007/s12237-020-00890-2

Download citation

Keywords

  • Stable carbon isotope
  • Aliphatic hydrocarbon
  • Contamination
  • Sewage
  • Petroleum