Skip to main content

Advertisement

Log in

Spatial Variability of Organic Matter and Phosphorus Cycling in Rhône River Prodelta Sediments (NW Mediterranean Sea, France): a Model-Data Approach

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The Mediterranean Sea (MS) is a large oligotrophic sea whose productivity is sensitive to riverine nutrient inputs. More specifically, phosphorus (P) river supply is crucial for the MS, with an important role of the estuarine/deltaic filter especially for the storage and recycling in sediments. A benthic dataset from the Rhône River prodelta was used to derive P budgets, by means of an early diagenetic model including the benthic P cycle. The model was fitted to pore water profiles of oxygen, nitrate, sulfate, dissolved inorganic carbon, ammonium, oxygen demand units, dissolved inorganic phosphorus (DIP) and solid data (organic carbon (OC), Fe-bound P, Ca-bound P and organic P). Results indicated that the intensity of biogeochemical processes occurring below the sediment–water interface decreased from the river mouth to the adjacent continental shelf with decreasing integrated rates of OC mineralization (160–10 mmol m−2 day−1). The organic P mineralization was intense near the river mouth and decreased offshore (1196–80 μmol m−2 day−1). Its contribution to DIP release was large (> 90%). Fe-bound P had a key role in transferring P to deeper layers. These deltaic sediments played an important role as a source of regenerated DIP. A significant part of DIP was recycled to the overlying waters (72–94%), representing 25% of the riverine DIP discharge. Simultaneously, 6–28% of DIP produced in sediments was buried as Ca-bound P. Overall, this study highlighted the importance of deltaic sediments as an additional source of DIP to the coastal sea, and a minor but permanent sink of phosphorus as solid P burial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The entire dataset is provided on the SeaNoe database (https://doi.org/10.17882/73204).

References

  • Ait Ballagh, F. E., C. Rabouille, F. Andrieux-loyer, K. Soetaert, K. Elkalay, and K. Khalil. 2020. Spatio-temporal dynamics of sedimentary phosphorus along two temperate eutrophic estuaries: A data-modelling approach. Continental Shelf Research 193. Elsevier Ltd: 104037. https://doi.org/10.1016/j.csr.2019.104037.

  • Andrieux-Loyer, F., and A. Aminot. 2001. Phosphorus forms related to sediment grain size and geochemical characteristics in french coastal areas. Estuarine, Coastal and Shelf Science 52 (5): 617–629. https://doi.org/10.1006/ecss.2001.0766.

    Article  CAS  Google Scholar 

  • Andrieux-Loyer, F., X. Philippon, G. Bally, R. Kérouel, A. Youenou, and J. Le Grand. 2008. Phosphorus dynamics and bioavailability in sediments of the Penzé estuary (NW France): In relation to annual P-fluxes and occurrences of Alexandrium Minutum. Biogeochemistry 88 (3): 213–231. https://doi.org/10.1007/sl0533-008-9199-2.

    Article  CAS  Google Scholar 

  • Anschutz, P., S. Zhong, B. Sundby, A. Mucci, and C. Gobeil. 1998. Burial efficiency of phosphorus and the geochemistry of iron in continental margin sediments. Limnology and Oceanography 43 (1): 53–64. https://doi.org/10.4319/lo.1998.43.1.0053.

    Article  CAS  Google Scholar 

  • Antoine, D., and A. Morel. 1995. Algal pigment distribution and primary production in the eastern Mediterranean as derived from coastal zone color scanner observations. Journal of Physical Oceanography Research 100: 16,193–16,209.

    Google Scholar 

  • Antonelli, C., M. Provansal, and C. Vella. 2004. Recent morphological channel changes in a deltaïc environment. The case of the Rhône River, France. Geomorphology 57 (3-4): 385–402. https://doi.org/10.1016/S0169-555X(03)00167-3.

    Article  Google Scholar 

  • Antonelli, C., F. Eyrolle, B. Rolland, M. Provansal, and F. Sabatier. 2008. Suspended sediment and 137Cs fluxes during the exceptional December 2003 flood in the Rhone River, Southeast France. Geomorphology 95 (3-4): 350–360. https://doi.org/10.1016/j.geomorph.2007.06.007.

    Article  Google Scholar 

  • Arnau, P., C. Liquete, and M. Canals. 2004. River mouth plume events and their dispersal in the northwestern Mediterranean Sea. Oceanography 17: 23–31.

    Article  Google Scholar 

  • Balls, P.W. 1994. Nutrient inputs to estuaries from nine Scottish east coast rivers; influence of estuarine processes on inputs to the North Sea. Estuarine, Coastal and Shelf Science. 39 (4): 329–352. https://doi.org/10.1006/ecss.1994.1068.

    Article  CAS  Google Scholar 

  • Batker, D., I. De la Torre, R. Costanza, J.W. Day, P. Swedeen, R. Boumans, and K.J. Bagstad. 2014. The threats to the value of ecosystem goods and services of the Mississippi Delta. In Perspectives on the restoration of the Mississippi Delta: The once and future delta, 155–173.

    Chapter  Google Scholar 

  • Benitez-Nelson, C.R. 2000. The biogeochemical cycling of phosphorus in marine systems. Earth Science Reviews 51 (1-4): 109–135. https://doi.org/10.1016/S0012-8252(00)00018-0.

    Article  CAS  Google Scholar 

  • Berg, P., S. Rysgaard, and B. Thamdrup. 2003. Dynamic modeling of early diagenesis and nutrient cycling. A case study in an arctic sediment. American Journal of Science 303: 905–955.

    Article  CAS  Google Scholar 

  • Berner, R.A. 1970. Sedimentary pyrite formation. American Journal of Science 268 (1): 1–23.

    Article  CAS  Google Scholar 

  • Berner, R. A. 1980. Early diagenesis: a theoretical approach. Princeton: Princeton University Press. https://doi.org/10.1016/j.giq.2006.06.002, 23, 2, 330, 331 241 pp.

  • Berner, R.A. 1989. Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over phanerozoic time. Global and Planetary Change 1 (1-2): 97–122. https://doi.org/10.1016/0921-8181(89)90018-0.

    Article  Google Scholar 

  • Bianchi, T.S., and M.A. Allison. 2009. Large-river delta-front estuaries as natural “recorders” of global environmental change. Proceedings of the National Academy of Sciences 106 (20): 8085–8092. https://doi.org/10.1073/pnas.0812878106.

    Article  Google Scholar 

  • Boudreau, Bernard P. 1996. A method-of-line code for carbon and nutrient daigenesis in aquatic sediments. Computer & Geosciences 22 (5): 479–496.

    Article  CAS  Google Scholar 

  • Boudreau, B.P. 1997. Diagenetic models and their implementation. Modelling transport and reactions in aquatic sediments. Springer. https://doi.org/10.1016/S0264-8172(98)80005-6.

  • Burdige, D.J. 2007. Preservation of organic matter in marine sediments: Controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chemical Reviews 107 (2): 467–485. https://doi.org/10.1021/cr050347q.

    Article  CAS  Google Scholar 

  • Cade-Menun, B.J., S. Duhamel, R.J. Dodd, C. Lønborg, C.T. Parsons, and W.D. Taylor. 2019. Editorial: Phosphorus along the soil-freshwater-ocean continuum. Frontiers in Marine Science 10 (6): 1–3. https://doi.org/10.1071/en13151.

    Article  Google Scholar 

  • Cai, W.J., and F.L. Sayles. 1996. Oxygen penetration depths and fluxes in marine sediments. Marine Chemistry 52 (2): 123–131. https://doi.org/10.1016/0304-4203(95)00081-X.

    Article  CAS  Google Scholar 

  • Canavan, R.W., and C.P. Slomp. 2006. Phosphorus cycling in the sediment of a coastal freshwater lake and response to salinization. In Biogeochemical cycling of nutrients and trace metals in the sediment of Haringvliet Lake: Response to salinization, 95–113.

    Google Scholar 

  • Canavan, Richard W., Caroline P. Slomp, Parisa Jourabchi, Philippe Van Cappellen, Anniet M. Laverman, and Gerard A. van den Berg. 2006. Organic matter mineralization in sediment of a coastal freshwater lake and response to salinization. Geochimica et Cosmochimica Acta 70 (11): 2836–2855. https://doi.org/10.1016/j.gca.2006.03.012.

    Article  CAS  Google Scholar 

  • Canfield, D.E., E. Kristensen, and B. Thamdrup. 2005. The iron and manganese cycles. Advances in Marine Biology 48. https://doi.org/10.1016/S0065-2881(05)48008-6.

  • Cathalot, C. 2008. Devenir et impact des apports fluviaux sur les marges continentales: importance biogéochimique et environnementale du recyclage dans les sédiments du prodelta du Rhône. Ph.D. thesis, Université Pierre et Marie Curie, Paris, France.

  • Cathalot, C., C. Rabouille, L. Pastor, B. Deflandre, E. Viollier, R. Buscail, A. Grémare, C. Treignier, and A. Pruski. 2010. Temporal variability of carbon recycling in coastal sediments influenced by rivers: Assessing the impact of flood inputs in the Rhone River prodelta. Biogeosciences 7 (3): 1187–1205.

    Article  CAS  Google Scholar 

  • Cathalot, C., C. Rabouille, N. Tisnérat-Laborde, F. Toussaint, P. Kerhervé, R. Buscail, K. Loftis, M.Y. Sun, J. Tronczynski, S. Azoury, B. Lansard, C. Treignier, L. Pastor, and T. Tesi. 2013. The fate of river organic carbon in coastal areas: A study in the Rhône River delta using multiple isotopic (δ13C, δ14C) and organic tracers. Geochimica et Cosmochimica Acta 118: 33–55. https://doi.org/10.1016/j.gca.2013.05.001.

    Article  CAS  Google Scholar 

  • Charmasson, S., O. Radakovitch, M. Arnaud, P. Bouisset, and A.S. Pruchon. 1998. Long-core profiles of 137Cs, 134Cs, 60Co and 210Pb in sediment near the Rhône River (northwestern Mediterranean Sea). Estuaries 21 (3): 367–378. https://doi.org/10.1007/BF02690450.

    Article  CAS  Google Scholar 

  • Clayton, T.D., and R.H. Byrne. 1993. Spectrophotometric seawater pH measurements: Total hydrogen results. Deep-Sea Research 40 (10): 2115–2129. https://doi.org/10.1016/0967-0637(93)90048-8.

    Article  CAS  Google Scholar 

  • Cloern, J.E. 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210: 223–253.

    Article  CAS  Google Scholar 

  • Dedieu, K., C. Rabouille, F. Gilbert, K. Soetaert, E. Metzger, C. Simonucci, D. Jézéquel, F. Prévot, P. Anschutz, S. Hulth, S. Ogier, and V. Mesnage. 2007. Coupling of carbon, nitrogen and oxygen cycles in sediments from a Mediterranean lagoon: A seasonal perspective. Marine Ecology Progress Series 346: 45–59. https://doi.org/10.3354/meps07031.

    Article  CAS  Google Scholar 

  • Delaney, M.L. 1998. Phosphorus accumulation in marine sediments and the oceanic phosphorus cycle. Global Biogeochemical Cycles 12 (4): 563–572.

    Article  CAS  Google Scholar 

  • Diaz, R.J., and R. Rosenberg. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321 (5891): 926–929. https://doi.org/10.1126/science.1156401.

    Article  CAS  Google Scholar 

  • Diaz, F., P. Raimbault, B. Boudjellal, N. Garcia, and T. Moutin. 2001. Early spring phosphorus limitation of primary productivity in a NW Mediterranean coastal zone (Gulf of Lions) 211: 51–62.

  • Dickson, A G, C. L. Sabine, and J. R. Christian. 2007. Guide to best practices for ocean CO2 measurements. In PICES Special Publication, 3:191 pp.

  • Dijkstra, N., C. P. Slomp, and T. Behrends. 2016. Vivianite is a key sink for phosphorus in sediments of the Landsort Deep, an intermittently anoxic deep basin in the Baltic Sea. Chemical Geology 438. Elsevier B.V.: 58–72. https://doi.org/10.1016/j.chemgeo.2016.05.025.

  • Downing, J.A., M. McClain, R. Twilley, J.M. Melack, J. Elser, N.N. Rabalais, W.M. Lewis, et al. 1999. The impact of accelerating land-use change on the N-cycle of tropical aquatic ecosystems: Current conditions and projected changes. Biogeochemistry 46 (1-3): 109–148. https://doi.org/10.1007/BF01007576.

    Article  Google Scholar 

  • Dugdale, R.C., and F.P. Wilkerson. 1988. Nutrient sources and primary production in the eastern Mediterranean. Oceanologica Acta: 179–184.

  • Dumoulin, J.P., L. Pozzato, J. Rassman, F. Toussaint, M. Fontugne, N. Tisnérat-Laborde, L. Beck, I. Caffy, E. Delqué-Količ, C. Moreau, and C. Rabouille. 2018. Isotopic signature (δ13C, δ14C) of DIC in sediment pore waters: An example from the Rhone River delta. Radiocarbon 60 (5): 1465–1481. https://doi.org/10.1017/RDC.2018.111.

    Article  CAS  Google Scholar 

  • Egger, M., T. Jilbert, T. Behrends, C. Rivard, and C. P. Slomp. 2015. Vivianite is a major sink for phosphorus in methanogenic coastal surface sediments. Geochimica et Cosmochimica Acta 169. Elsevier Ltd: 217–235. https://doi.org/10.1016/j.gca.2015.09.012.

  • Emerson, S., and G. Widmer. 1978. Early diagenesis in anaerobic lake sediments—II. Thermodynamic and kinetic factors controlling the formation of iron phosphate. Geochimica et Cosmochimica Acta 42 (9): 1307–1316. https://doi.org/10.1016/0016-7037(78)90035-2.

    Article  CAS  Google Scholar 

  • Emerson, S., J. Hedges, H.D. Holland, and K.K. Turekian. 2004. Sediment diagenesis and benthic flux. The Oceans and Marine Geochemistry 6: 293–319.

    CAS  Google Scholar 

  • Emsley, J. 1980. The phosphorus cycle. In The handbook of environmental chemistry, 20:147–167. https://doi.org/10.1016/0143-1471(82)90111-8, 2.

    Chapter  Google Scholar 

  • Estournel, C., V. Kondrachoff, P. Marsaleix, and R. Vehil. 1997. The plume of the Rhone: Numerical simulation and remote sensing. Continental Shelf Research 17 (8): 899–924. https://doi.org/10.1016/S0278-4343(96)00064-7.

    Article  Google Scholar 

  • Eyrolle, F., O. Radakovitch, P. Raimbault, S. Charmasson, C. Antonelli, E. Ferrand, D. Aubert, G. Raccasi, S. Jacquet, and R. Gurriaran. 2012. Consequences of hydrological events on the delivery of suspended sediment and associated radionuclides from the Rhône River to the Mediterranean Sea. Journal of Soils and Sediments 12 (9): 1479–1495. https://doi.org/10.1007/s11368-012-0575-0.

    Article  CAS  Google Scholar 

  • Ferrón, S., T. Ortega, and J.M. Forja. 2009. Benthic respiration on the northeastern shelf of the Gulf of Cádiz (SW Iberian Peninsula). Marine Ecology Progress Series 392: 69–80. https://doi.org/10.3354/meps08240.

    Article  CAS  Google Scholar 

  • Filippelli, G.M., and M.L. Delaney. 1996. Phosphorus geochemistry of equatorial Pacific sediments. Geochimica et Cosmochimica Acta 60 (9): 1479–1495. https://doi.org/10.1016/0016-7037(96)00042-7.

    Article  CAS  Google Scholar 

  • Fox, L.E. 1990. Geochemistry of dissolved phosphate in the Sepik River and Estuary, Papua, New Guinea. Geochimica et Cosmochimica Acta 54 (4): 1019–1024. https://doi.org/10.1016/0016-7037(90)90435-N.

    Article  CAS  Google Scholar 

  • Froelich, P.N. 1988. Kinetic control of dissolved phosphate in natural rivers and estuaries: A primer on the phosphate buffer mechanism. Limnology and Oceanography 33: 649–668.

    CAS  Google Scholar 

  • Gatti, J., A. Petrenko, J.L. Devenon, Y. Leredde, and C. Ulses. 2006. The Rhone river dilution zone present in the northeastern shelf of the Gulf of Lion in December 2003. Continental Shelf Research 26 (15): 1794–1805. https://doi.org/10.1016/j.csr.2006.05.012.

    Article  Google Scholar 

  • Got, H., and J.C. Aloisi. 1990. The Holocene sedimentation on the Gulf of Lions margin: A quantitative approach. Continental Shelf Research 10 (9-11): 841–855. https://doi.org/10.1016/0278-4343(90)90062-Q.

    Article  Google Scholar 

  • Grasshof, K., M. Ehrhardt, and K. Kremling. 1983. Methods of seawater analysis, Third, Completely Revised and Extended Edition. Verlag Chemie GmbH. https://doi.org/10.1016/0304-4203(78)90045-2, 7, 1, 86, 87.

  • Gypens, Nathalie, Christiane Lancelot, and Karline Soetaert. 2008. Simple parameterisations for describing N and P diagenetic processes: Application in the North Sea. Progress in Oceanography 76 (1): 89–110. https://doi.org/10.1016/j.pocean.2007.10.003.

    Article  Google Scholar 

  • Hammond, D.E. 1999. Diagenesis of carbon and nutrients and benthic exchange in sediments of the northern Adriatic Sea. Marine Chemistry 66 (1-2): 53–79.

    Article  CAS  Google Scholar 

  • Hansen, H. P., and F. Koroleff. 1999. Determination of nutrients. In Methods of seawater analysis, Third Edition, Completely Revised and Extended Edition, 159–228. https://doi.org/10.1002/9783527613984.

  • Hofmann, A.F., K. Soetaert, and J.J. Middelburg. 2008. Present nitrogen and carbon dynamics in the Scheldt estuary using a novel 1-D model. Biogeosciences 5 (4): 981–1006. https://doi.org/10.5194/bg-5-981-2008.

    Article  CAS  Google Scholar 

  • Howarth, R.W., G. Billen, D. Swaney, A. Townsend, N. Jaworski, K. Lajtha, J.A. Downing, R. Elmgren, N. Caraco, T. Jordan, F. Berendse, J. Freney, V. Kudeyarov, P. Murdoch, and Z. Zhao-Liang. 1996. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. Biogeochemistry 35 (1): 75–139. https://doi.org/10.1590/2318-0331.011616030.

    Article  CAS  Google Scholar 

  • Ibañez, C., D. Pont, and N. Prat. 1997. Characterization of the Ebre and Rhone estuaries: A basis for defining and classifying salt-wedge estuaries. Limnology and Oceanography 42 (1): 89–101. https://doi.org/10.4319/lo.1997.42.1.0089.

    Article  Google Scholar 

  • Jackson, J.B.C., M.X. Kirby, W.H. Berger, K.A. Bjorndal, L.W. Botsford, B.J. Bourque, R.H. Bradbury, et al. 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science 293 (5530): 629–637. https://doi.org/10.1126/science.1059199.

    Article  CAS  Google Scholar 

  • Joshi, S.R., R.K. Kukkadapu, D.J. Burdige, M.E. Bowden, D.L. Sparks, and D.P. Jaisi. 2015. Organic matter remineralization predominates phosphorus cycling in the mid-bay sediments in the Chesapeake Bay. Environmental Science and Technology 49 (10): 5887–5896. https://doi.org/10.1021/es5059617.

    Article  CAS  Google Scholar 

  • Khalil, K, A M Laverman, M Raimonet, and C Rabouille. 2018. Importance of nitrate reduction in benthic carbon mineralization in two eutrophic estuaries: Modeling, observations and laboratory experiments. Marine Chemistry 199. Elsevier: 24–36. https://doi.org/10.1016/j.marchem.2018.01.004.

  • Kraal, P., E. D. Burton, A. L. Rose, B. D. Kocar, R. S. Lockhart, K. Grice, R. T. Bush, E. Tan, and S. M. Webb. 2015. Sedimentary iron-phosphorus cycling under contrasting redox conditions in a eutrophic estuary. Chemical Geology 392. Elsevier B.V.: 19–31. https://doi.org/10.1016/j.chemgeo.2014.11.006.

  • Krom, M.D., and R.A. Berner. 1981. The diagenesis of phosphorus in a nearshore marine sediment. Geochimica et Cosmochimica Acta 45 (2): 207–216. https://doi.org/10.1016/0016-7037(81)90164-2.

    Article  CAS  Google Scholar 

  • Krom, M.D., N. Kress, S. Brenner, and L.I. Gordon. 1991. Phosphorus limitation of primary productivity in the eastern Mediterranean Sea. Limnology and Oceanography 36 (3): 424–432. https://doi.org/10.4319/lo.1991.36.3.0424.

    Article  CAS  Google Scholar 

  • Lansard, B., S. Charmasson, C. Gascó, M.P. Antón, C. Grenz, and M. Arnaud. 2007. Spatial and temporal variations of plutonium isotopes (238Pu and 239,240Pu) in sediments off the Rhone River mouth (NW Mediterranean). Science of the Total Environment 376 (1-3): 215–227. https://doi.org/10.1016/j.scitotenv.2007.01.069.

    Article  CAS  Google Scholar 

  • Lansard, B., C. Rabouille, L. Denis, and C. Grenz. 2008. In situ oxygen uptake rates by coastal sediments under the influence of the Rhône River (NW Mediterranean Sea). Continental Shelf Research 28 (12): 1501–1510. https://doi.org/10.1016/j.csr.2007.10.010.

    Article  Google Scholar 

  • Lansard, B., C. Rabouille, L. Denis, and C. Grenz. 2009. Benthic remineralization at the land-ocean interface: A case study of the Rhône River (NW Mediterranean Sea). Estuarine, Coastal and Shelf Science 81. Elsevier Ltd: 544–554. https://doi.org/10.1016/j.ecss.2008.11.025.

  • Lebo, M.E. 1991. Particle-bound phosphorus along an urbanized coastal plain estuary. Marine Chemistry 34 (3-4): 225–246. https://doi.org/10.1016/0304-4203(91)90005-H.

    Article  CAS  Google Scholar 

  • Lehtoranta, J., O. P. Savchuk, J. Elken, K. Dahlbo, H. Kuosa, M. Raateoja, P. Kauppila, A. Räike, and H. Pitkänen. 2017. Atmospheric forcing controlling inter-annual nutrient dynamics in the open Gulf of Finland. Journal of Marine Systems 171. Elsevier B.V: 4–20. https://doi.org/10.1016/j.jmarsys.2017.02.001.

  • Lenstra, W.K., M. Egger, N.A.G.M. van Helmond, E. Kritzberg, D.J. Conley, and C.P. Slomp. 2018. Variations in river input of iron impact sedimentary phosphorus burial in an oligotrophic Baltic Sea estuary. Biogeosciences Discussions 15 (10): 6979–6996. https://doi.org/10.1021/pr100554m.

    Article  CAS  Google Scholar 

  • Lochet, F., and M. Leveau. 1990. Transfers between a eutrophic ecosystem, the river Rh8ne, and an oligotrophic ecosystem, the North-Western Mediterranean Sea. Hydrobiologia 207 (1): 95–103.

    Article  CAS  Google Scholar 

  • Ludwig, W., and J.L. Probst. 1998. River sediment discharge to the oceans: Present-day controls and global budgets. American Journal of Science 298 (4): 265–295. https://doi.org/10.2475/ajs.298.4.265.

    Article  CAS  Google Scholar 

  • Ludwig, W., E. Dumont, M. Meybeck, and S. Heussner. 2009. River discharges of water and nutrients to the Mediterranean and Black Sea: Major drivers for ecosystem changes during past and future decades? Progress in Oceanography 80. Elsevier Ltd: 199–217. https://doi.org/10.1016/j.pocean.2009.02.001, 80, 3-4.

  • Malagó, A., F. Bouraoui, B. Grizzetti, and A. De Roo. 2019. Modelling nutrient fluxes into the Mediterranean Sea. Journal of Hydrology: Regional Studies 22. Elsevier: 100592. https://doi.org/10.1016/j.ejrh.2019.01.004.

  • McKee, B.A., R.C. Aller, M.A. Allison, T.S. Bianchi, and G.C. Kineke. 2004. Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: Benthic boundary layer and seabed processes. Continental Shelf Research 24 (7-8): 899–926. https://doi.org/10.1016/j.csr.2004.02.009.

    Article  Google Scholar 

  • Meybeck, M. 1982. Carbon, nitrogen, and phosphorus transport by world rivers. American Journal of Science 282 (4): 401–450.

    Article  CAS  Google Scholar 

  • Milliman, J.D., and R.H. Meade. 1983. World-wide delivery of river sediment to the oceans. The Journal of Geology 91 (1): 1–21.

    Article  Google Scholar 

  • Miralles, J., O. Radakovitch, and J.C. Aloisi. 2005. 210Pb sedimentation rates from the Northwestern Mediterranean margin. Marine Geology 216 (3): 155–167. https://doi.org/10.1016/j.margeo.2005.02.020.

    Article  CAS  Google Scholar 

  • Morse, J.W., and P.M. Eldridge. 2007. A non-steady state diagenetic model for changes in sediment biogeochemistry in response to seasonally hypoxic/anoxic conditions in the “dead zone” of the Louisiana shelf. Marine Chemistry 106 (1-2): 239–255. https://doi.org/10.1016/j.marchem.2006.02.003.

    Article  CAS  Google Scholar 

  • Moutin, T., and P. Raimbault. 2002. Primary production, carbon export and nutrients availability in western and eastern Mediterranean Sea in early summer 1996 (MINOS cruise). Journal of Marine Systems 33–34: 273–288.

    Article  Google Scholar 

  • Moutin, T., P. Raimbault, H.L. Golterman, and B. Coste. 1998. The input of nutrients by the Rhône river into the Mediterranean Sea: Recent observations and comparison with earlier data. Hydrobiologia 373 (374): 237–246 10.1023/A.

    Article  Google Scholar 

  • Moutin, T., F. Van Wambeke, and L. Prieur. 2012. Introduction to the biogeochemistry from the oligotrophic to the ultraoligotrophic Mediterranean (BOUM) experiment. Biogeosciences 9 (10): 3817–3825. https://doi.org/10.5194/bg-9-3817-2012.

    Article  CAS  Google Scholar 

  • Muller-Karger, F.E., R. Varela, R. Thunell, R. Luerssen, C. Hu, and J.J. Walsh. 2005. The importance of continental margins in the global carbon cycle. Geophysical Research Letters 32 (1): 1–4. https://doi.org/10.1029/2004GL021346.

    Article  CAS  Google Scholar 

  • Murphy, J., and J.P. Riley. 1962. A modified single solution method for determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36. https://doi.org/10.1057/9781137461131.

    Article  CAS  Google Scholar 

  • Naudin, J.J., G. Cauwet, M.J. Chrétiennot-Dinet, B. Deniaux, J.L. Devenon, and H. Pauc. 1997. River discharge and wind influence upon particulate transfer at the land-ocean interaction: Case study of the Rhone River plume. Estuarine, Coastal and Shelf Science 45 (3): 303–316. https://doi.org/10.1006/ecss.1996.0190.

    Article  CAS  Google Scholar 

  • Nixon, S.W. 1995. Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia 41 (1): 199–219. https://doi.org/10.1080/00785236.1995.10422044.

    Article  Google Scholar 

  • Ollivier, P., B. Hamelin, and O. Radakovitch. 2010. Seasonal variations of physical and chemical erosion: A three-year survey of the Rhone River (France). Geochimica et Cosmochimica Acta 74. Elsevier Ltd: 907–927. https://doi.org/10.1016/j.gca.2009.10.037.

  • Pastor, L., C. Cathalot, B. Deflandre, E. Viollier, K. Soetaert, F.J.R. Meysman, C. Ulses, E. Metzger, and C. Rabouille. 2011. Modeling biogeochemical processes in sediments from the Rhǒne River prodelta area (NW Mediterranean Sea). Biogeosciences 8 (5): 1351–1366. https://doi.org/10.5194/bg-8-1351-2011.

    Article  CAS  Google Scholar 

  • Pont, D., J.P. Simonnet, and A.V. Walter. 2002. Medium-term changes in suspended sediment delivery to the ocean: Consequences of catchment heterogeneity and river management (Rhône River, France). Estuarine, Coastal and Shelf Science 54 (1): 1–18. https://doi.org/10.1006/ecss.2001.0829.

    Article  CAS  Google Scholar 

  • Powley, H.R., M.D. Krom, and P. Van Cappellen. 2017. Understanding the unique biogeochemistry of the Mediterranean Sea: Insights from a coupled phosphorus and nitrogen model. Global Biogeochemical Cycles 31 (6): 1010–1031. https://doi.org/10.1002/2017GB005648.

    Article  CAS  Google Scholar 

  • Pozzato, L., J. Rassmann, B. Lansard, J-P. Dumoulin, P. van Breugel, C. Rabouille. 2018. Origin of remineralized organic matter in sediments from the Rhone River prodelta (NW Mediterranean) traced by Δ14C and δ13C signatures of pore water DIC. Progr. Oceanogr., 163: 112–122.

  • Provansal, M., O. Radakovitch, F. Sabatier, and A. Clémens. 2012. Le Rhône aval en 21 questions. Villeurbanne: Rapport ZABR, Graie Editors.

    Google Scholar 

  • Psenner, R., B. Bostrom, M. Dinka, K. Pettersson, R. Pucsko, and M. Sager. 1988. Fractionation of phosphorus in suspended matter and sediment. Ergebnisse der Limnologie 22: 219–228.

    Google Scholar 

  • Rabouille, C., and J.F. Gaillard. 1991. Towards the EDGE: Early diagenetic global explanation. A model depicting the early diagenesis of organic matter, O2, NO3, Mn, and PO4. Geochimica et Cosmochimica Acta 55 (9): 2511–2525. https://doi.org/10.1016/0016-7037(91)90369-G.

    Article  CAS  Google Scholar 

  • Rabouille, C., L. Denis, K. Dedieu, G. Stora, B. Lansard, and C. Grenz. 2003. Oxygen demand in coastal marine sediments: Comparing in situ microelectrodes and laboratory core incubations. Journal of Experimental Marine Biology and Ecology 285–286: 49–69. https://doi.org/10.1016/S0022-0981(02)00519-1.

    Article  Google Scholar 

  • Rabouille, C., D.J. Conley, M.H. Dai, W.J. Cai, C.T.A. Chen, B. Lansard, R. Green, K. Yin, P.J. Harrison, M. Dagg, and B. McKee. 2008. Comparison of hypoxia among four river-dominated ocean margins: The Changjiang (Yangtze), Mississippi, Pearl, and Rhône rivers. Continental Shelf Research 28 (12): 1527–1537. https://doi.org/10.1016/j.csr.2008.01.020.

    Article  Google Scholar 

  • Radakovitch, O., S. Charmasson, M. Arnaud, and P. Bouisset. 1999. 210Pb and caesium accumulation in the Rhône Delta. Estuarine, Coastal and Shelf Science 48 (1): 77–92.

    Article  CAS  Google Scholar 

  • Rassmann, J., B. Lansard, L. Pozzato, and C. Rabouille. 2016. Carbonate chemistry in sediment porewaters of the Rhône River delta driven by early diagenesis (northwestern Mediterranean). Biogeosciences 13 (18): 5379–5394. https://doi.org/10.5194/bg-13-5379-2016.

    Article  CAS  Google Scholar 

  • Rassmann, J., E.M. Eitel, C. Cathalot, C. Brandily, B. Lansard, M. Taillefert, and C. Rabouille. 2020. Benthic alkalinity and DIC fluxes in the Rhône River prodelta generated by decoupled aerobic and anaerobic processes. Biogeosciences Discussions 17 (1): 13–33.

    Article  CAS  Google Scholar 

  • Ratmaya, W. 2018. Rôle des sédiments dans le cycle des nutriments et impacts sur l’eutrophisation des écosystèmes côtiers. Ph.D. thesis, Univ. Bretagne Occidentale, Brest, France.

  • Revsbech, N.P. 1989. An oxygen microsensor with a guard cathode. Limnology and Oceanography 34 (2): 474–478. https://doi.org/10.4319/lo.1989.34.2.0474.

    Article  CAS  Google Scholar 

  • Ruttenberg, K.C. 1992. Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnology and Oceanography 37 (7): 1460–1482. https://doi.org/10.4319/lo.1992.37.7.1460.

    Article  CAS  Google Scholar 

  • Ruttenberg, K.C. 2014. 10.13 – the global phosphorus cycle. Treatise on Geochemistry: 499–558. https://doi.org/10.1016/B978-0-08-095975-7.00813-5.

  • Ruttenberg, K.C., and R.A. Berner. 1993. Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments. Geochimica et Cosmochimica Acta 57 (5): 991–1007. https://doi.org/10.1016/0016-7037(93)90035-U.

    Article  CAS  Google Scholar 

  • Sabatier, F., G. Maillet, M. Provansal, T.J. Fleury, S. Suanez, and C. Vella. 2006. Sediment budget of the Rhône delta shoreface since the middle of the 19th century. Marine Geology 234 (1-4): 143–157. https://doi.org/10.1016/j.margeo.2006.09.022.

    Article  Google Scholar 

  • Schnetger, B., and C. Lehners. 2014. Determination of nitrate plus nitrite in small volume marine water samples using vanadium(III) chloride as a reduction agent. Marine Chemistry 160. Elsevier B.V.: 91–98. https://doi.org/10.1016/j.marchem.2014.01.010.

  • Seeberg-Elverfeldt, J., M. Schlüter, T. Feseker, and M. Kölling. 2005. Rhizon sampling of porewaters near the sediment-water interface of aquatic systems. Limnology and Oceanography: Methods 3 (8): 361–371. https://doi.org/10.4319/lom.2005.3.361.

    Article  Google Scholar 

  • Slomp, C.P., E.H.G. Epping, W. Helder, and W.V. Raaphorst. 1996. A key role for iron-bound phosphorus in authigenic apatite formation in North Atlantic continental platform sediments. Journal of Marine Research 54 (6): 1179–1205. https://doi.org/10.1357/0022240963213745.

    Article  CAS  Google Scholar 

  • Slomp, C.P., J.F.P. Malschaert, and W.V. Raaphorst. 1998. The role of adsorption in sediment-water exchange of phosphate in North Sea continental margin sediments. Limnology and Oceanography 43 (5): 832–846.

    Article  CAS  Google Scholar 

  • Slomp, C.P., J. Thomson, and G.J. De Lange. 2004. Controls on phosphorus regeneration and burial during formation of eastern Mediterranean sapropels. Marine Geology 203 (1-2): 141–159. https://doi.org/10.1016/S0025-3227(03)00335-9.

    Article  CAS  Google Scholar 

  • Smith, V.H., G.D. Tilman, and J.C. Nekola. 1999. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution 100 (1-3): 179–196.

    Article  CAS  Google Scholar 

  • Soetaert, K., and F. Meysman. 2012. Reactive transport in aquatic ecosystems: Rapid model prototyping in the open source software R. Environmental Modelling and Software 32. Elsevier Ltd: 49–60. https://doi.org/10.1016/j.envsoft.2011.08.011.

  • Soetaert, K., P.M.J. Herman, and J.J. Middelburg. 1996. A model of early diagenetic processes from the shelf to abyssal depths. Geochimica et Cosmochimica Acta 60 (6): 1019–1040. https://doi.org/10.1016/0016-7037(96)00013-0.

    Article  CAS  Google Scholar 

  • Stookey, L.L. 1970. Ferrozine-A new spectrophotometric reagent for iron. Analytical Chemistry 42 (7): 779–781.

    Article  CAS  Google Scholar 

  • Sundby, B., C. Gobeil, N. Silverberg, and A. Mucci. 1992. The phosphorus cycle in coastal marine sediments. Limnology and Oceanography 37 (6): 1129–1145. https://doi.org/10.4319/lo.1992.37.6.1129.

    Article  CAS  Google Scholar 

  • Syers, J.K., R.F. Harris, and D.E. Armstrong. 1973. Phosphate chemistry in lake sediments. Journal of Environment Quality 2 (1): 1–14. https://doi.org/10.2134/jeq1973.00472425000200010001x.

    Article  CAS  Google Scholar 

  • Syvitski, J.P.M., A.J. Kettner, I. Overeem, E.W.H. Hutton, M.T. Hannon, G.R. Brakenridge, J.W. Day, et al. 2009. Sinking deltas. Nature Geoscience 2 (10): 681–686.

    Article  CAS  Google Scholar 

  • Thamdrup, B., H. Fossing, and B.B. Jorgensen. 1994. Manganese, iron, and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochimica et Cosmochimica Acta 58 (23): 5115–5129.

    Article  CAS  Google Scholar 

  • Tromp, T.K., P. Van Cappellen, and R.M. Key. 1995. A global model for the early diagenesis of organic carbon and organic phosphorus in marine sediments. Geochimica et Cosmochimica Acta 59 (7): 1259–1284. https://doi.org/10.1016/0016-7037(95)00042-X.

    Article  CAS  Google Scholar 

  • Tyrrell, T. 1999. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400 (6744): 525–531.

    Article  CAS  Google Scholar 

  • Van Den Broeck, N., and T. Moutin. 2002. Phosphate in the sediments of the Gulf of Lions (NW Mediterranean Sea), relationship with input by the river Rhone. Hydrobiologia 472 (1/3): 85–94. https://doi.org/10.1023/A:1016308931115.

    Article  Google Scholar 

  • Vitousek, P.M., H.A. Mooney, J. Lubchenco, and J.M. Melillo. 1997. Human domination of Earth’s ecosystems. Science 277 (5325): 494–499. https://doi.org/10.1126/science.277.5325.494.

    Article  CAS  Google Scholar 

  • Wang, Y.F., and P. Van Cappellen. 1996. A multicomponent reactive transport model of early diagenesis: Application to redox cycling in coastal marine sediments. Geochimica et Cosmochimica Acta 60 (16): 2993–3014. https://doi.org/10.1016/0016-7037(96)00140-8.

    Article  CAS  Google Scholar 

  • Wijsman, J.W.M., P.M.J. Herman, J.J. Middelburg, and K. Soetaert. 2002. A model for early diagenetic processes in sediments of the continental shelf of the Black Sea. Estuarine, Coastal and Shelf Science 54 (3): 403–421. https://doi.org/10.1006/ecss.2000.0655.

    Article  CAS  Google Scholar 

  • Wilkinson, G.M. 2017. Eutrophication of freshwater and coastal ecosystems. Encyclopedia of sustainable technologies. Vol. 4. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10160-5.

Download references

Acknowledgements

We would like to thank the captain and the crew members of N.O. Tethys II (INSU/CNRS) for their assistance during sampling at sea. We are grateful to Laurie Brethous and Anouk Villedieu who provided help at sea during sampling and in the laboratory for measurements. Florian Caradec and Emilie Rabiller are acknowledged for their help during P speciation measurements at IFREMER’s laboratory. We thank the two anonymous reviewers whose comments greatly improved the quality of this manuscript. This is LSCE publication number 7409.

Funding

This work was supported by the INSU/EC2CO-MissRhoDia project, the French State program “Investissement d’avenir” run by the National Research Agency (AMORAD project ANR-11-RSNR-0002) and the CEDoc cooperation research project between Morocco and France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Rabouille.

Additional information

Communicated by Lijun Hou

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ait Ballagh, F.E., Rabouille, C., Andrieux-Loyer, F. et al. Spatial Variability of Organic Matter and Phosphorus Cycling in Rhône River Prodelta Sediments (NW Mediterranean Sea, France): a Model-Data Approach. Estuaries and Coasts 44, 1765–1789 (2021). https://doi.org/10.1007/s12237-020-00889-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-020-00889-9

Keywords

Navigation