Skip to main content

Advertisement

Log in

Evaluating a Steady-State Model of Soil Accretion in Everglades Mangroves (Florida, USA)

  • Short Communication
  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

To determine whether mangrove soil accretion can keep up with increasing rates of sea level rise, we modeled the theoretical, steady-state (i.e., excluding hurricane impacts) limits to vertical soil accretion in riverine mangrove forests on the southwest coast of Florida, USA. We measured dry bulk density (BD) and loss on ignition (LOI) from mangrove soils collected over a period of 12 years along an estuarine transect of the Shark River. The plotted relationship between BD and LOI was fit to an idealized mixing model equation that provided estimates of organic and inorganic packing densities in the soils. We used these estimates in combination with measures of root production and mineral deposition to calculate their combined contribution to steady-state, vertical soil accretion. On average, the modeled rates of accretion (0.9 to 2.4 mm year−1) were lower than other measured rates of soil accretion at these sites and far less than a recent estimate of sea level rise in south Florida (7.7 mm year−1). To date, however, no evidence of mangrove “drowning” has been observed in this region of the Everglades, indicating that assumptions of the linear accretion model are invalid and/or other contributions to soil accretion (e.g., additional sources of organic matter; feedbacks between physical sedimentation processes and biological responses to short-term environmental change) make up the accretion deficit. This exercise highlights the potential positive impacts of hurricanes on non-steady-state soil accretion that contribute to the persistence of neotropical mangroves in regions of high disturbance frequency such as the Gulf of Mexico and the Caribbean region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Atwood, T.B., R.M. Connolly, H. Almahasheer, P.E. Carnell, C.M. Duarte, C.J. Ewers Lewis, X. Irigoien, J.J. Kelleway, P.S. Lavery, P.I. Macreadie, O. Serrano, C.J. Sanders, I. Santos, A.D.L. Steven, and C.E. Lovelock. 2017. Global patterns in mangrove soil carbon stocks and losses. Nature Climate Change 7 (7): 523–528. https://doi.org/10.1038/nclimate3326.

    Article  CAS  Google Scholar 

  • Benedetto, K.M., and J.C. Trepanier. 2020. Climatology and spatiotemporal analysis of North Atlantic rapidly intensifying hurricanes (1851-2017). Atmosphere 11. https://doi.org/10.3390/atmos11030291.

  • Breithaupt, J.L., J.M. Smoak, T.J. Smith, C.J. Sanders, and A. Hoare. 2012. Organic carbon burial rates in mangrove sediments: strengthening the global budget. Global Biogeochemical Cycles 26 (3): GB3011. https://doi.org/10.1029/2012GB004375.

    Article  CAS  Google Scholar 

  • Breithaupt, J.L., J.M. Smoak, T.J. Smith, and C.J. Sanders. 2014. Temporal variability of carbon and nutrient burial, sediment accretion, and mass accumulation over the past century in a carbonate platform mangrove forest of the Florida Everglades. Journal of Geophysical Research: Biogeosciences 119: 2032–2048. https://doi.org/10.1002/2014JG002715.

    Article  CAS  Google Scholar 

  • Breithaupt, J.L., J.M. Smoak, V.H. Rivera-Monroy, E. Castañeda-Moya, R.P. Moyer, M. Simard, and C.J. Sanders. 2017. Partitioning the relative contributions of organic matter and mineral sediment to accretion rates in carbonate platform mangrove soils. Marine Geology 390: 170–180. https://doi.org/10.1016/j.margeo.2017.07.002.

    Article  CAS  Google Scholar 

  • Breithaupt, J.L., J.M. Smoak, R.H. Byrne, M.N. Waters, M.N, R.P. Moyer, and C.J. Sanders. 2018. Avoiding timescale bias in assessments of coastal wetland vertical change. Limnology and Oceanography 63 (S1): S477–S495. https://doi.org/10.1002/lno.10783.

    Article  Google Scholar 

  • Breithaupt, J.L., N. Hurst, H.E. Steinmuller, E. Duga, J.M. Smoak, J.S. Kominoski, and L.G. Chambers. 2020. Comparing the biogeochemistry of storm surge sediments and pre-storm soils in coastal wetlands: Hurricane Irma and the Florida Everglades. Estuaries and Coasts 43 (5): 1090–1103. https://doi.org/10.1007/s12237-019-00607-0.

    Article  CAS  Google Scholar 

  • Cahoon, D.R., K.L. McKee, and J.T. Morris. 2020. How plants influence resilience of salt marsh and mangrove wetlands to sea-level rise. Estuaries and Coasts. https://doi.org/10.1007/s12237-020-00834-w.

  • Castañeda-Moya, E., R.R. Twilley, V.H. Rivera-Monroy, K. Zhang, S.E. Davis, and M.S. Ross. 2010. Sediment and nutrient deposition associated with Hurricane Wilma in mangroves of the Florida Coastal Everglades. Estuaries and Coasts 33 (1): 45–58.

    Article  Google Scholar 

  • Castañeda-Moya, E., R.R. Twilley, V.H. Rivera-Monroy, D. Brian, B.D. Marx, C. Coronado-Molina, and S.M.L. Ewe. 2011. Patterns of root dynamics in mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. Ecosystems 14 (7): 1178–1195.

    Article  Google Scholar 

  • Castañeda-Moya, E., R.R. Twilley, and V.H. Rivera-Monroy. 2013. Allocation of biomass and net primary productivity of mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. Forest Ecology and Management 307: 226–241.

    Article  Google Scholar 

  • Castañeda-Moya, E., V.H. Rivera-Monroy, R.M. Chambers, X. Zhao, L. Lamb-Wotton, A. Gorsky, E.E. Gaiser, T.G. Troxler, J.S. Kominoski, and M. Hiatt. 2020. Hurricanes fertilize mangrove forests in the Gulf of Mexico (Florida Everglades, USA). Proceedings of the National Academy of Sciences 117 (9): 4831–4841.

    Article  Google Scholar 

  • Cavanaugh, K.C., J.R. Kellner, A.J. Forde, D.S. Gruner, J.D. Parker, W. Rodriguez, and I.C. Feller. 2014. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proceedings of the National Academy of Sciences 111 (2): 723–727. https://doi.org/10.1073/pnas.1315800111.

    Article  CAS  Google Scholar 

  • Cavanaugh, K.C., E.M. Dangremond, C.L. Doughty, A. Park Williams, J.D. Parker, M.A. Hayes, W. Rodriguez, and I.C. Feller. 2019. Climate-driven regime shifts in a mangrove–salt marsh ecotone over the past 250 years. Proceedings of the National Academy of Sciences 116 (43): 21602–21608. https://doi.org/10.1073/pnas.1902181116.

    Article  CAS  Google Scholar 

  • Charles, S.P., J.S. Kominoski, A.R. Armitage, H. Guo, C.A. Weaver, and S.C. Pennings. 2020. Quantifying how changing mangrove cover affects ecosystem carbon storage in coastal wetlands. Ecology 101 (2): e02916. https://doi.org/10.1002/ecy.2916.

    Article  Google Scholar 

  • Chen, R., and R.R. Twilley. 1999a. Patterns of mangrove forest structure and soil nutrient dynamics along the Shark River Estuary, Florida. Estuaries 22 (4): 955–970.

    Article  Google Scholar 

  • Chen, R., and R.R. Twilley. 1999b. A simulation model of organic matter and nutrient accumulation in mangrove wetland soils. Biogeochemistry 44 (1): 93–118.

    Google Scholar 

  • Childers, D.L. 2006. A synthesis of long-term research by the Florida Coastal Everglades LTER program. Hydrobiologia 569 (1): 531–544.

    Article  CAS  Google Scholar 

  • Danielson, T.M., V.H. Rivera-Monroy, E. Castañeda-Moya, H.O. Briceño, R. Travieso, B.D. Marx, E.E. Gaiser, and L.M. Farfan. 2017. Assessment of Everglades mangrove forest resilience: Implications for above-ground net primary productivity and carbon dynamics. FCE LTER Journal Articles. 468.

  • Davies, B.E. 1974. Loss-on-ignition as an estimate of soil organic matter. Soil Science Society of America, Proceedings 38 (1): 150–151.

    Article  Google Scholar 

  • Dessu, S., R. Price, T. Troxler, and J. Kominoski. 2018. Effects of sea-level rise and freshwater management on long-term water levels and water quality in the Florida Coastal Everglades. Journal of Environmental Management 211: 164–176.

    Article  Google Scholar 

  • Feher, L.C., M.J. Osland, G.H. Anderson, W.C. Vervaeke, K.W. Krauss, K.R.T. Whelan, K.M. Balentine, G. Tiling-Range, T.J. Smith III, and D.R. Cahoon. 2020. The long-term effects of hurricanes Wilma and Irma on soil elevation change in Everglades mangrove forests. Ecosystems 23 (5): 917–931. https://doi.org/10.1007/s10021-019-00446-x.

    Article  Google Scholar 

  • Friess, D.A., and E.L. Webb. 2014. Variability in mangrove ecosystem loss. Global Ecology and Biogeography 23 (7): 715–725. https://doi.org/10.1111/geb.12140.

    Article  Google Scholar 

  • Giri, C., E. Ochieng, L.L. Tieszen, Z. Zhu, A. Singh, T. Loveland, T. Masek, and N. Duke. 2011. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography 20 (1): 154–159. https://doi.org/10.1111/j.1466-8238.2010.00584.x.

    Article  Google Scholar 

  • Hamilton, S., and D. Casey. 2016. Creation of high spatiotemporal resolution global database of continuous mangrove forest cover for the 21st century: a big-data fusion approach. Global Ecology and Biogeography 25 (6): 729–738.

    Article  Google Scholar 

  • He, D., V.H. Rivera-Monroy, R. Jaffé, and X. Zhao. In press2020. Mangrove leaf species-specific isotopic signatures along a salinity and phosphorus soil fertility gradients in a subtropical estuary. Estuarine, Coastal and Shelf Science. https://doi.org/10.1016/j.ecss.2020.106768.

  • Kirwan, M.L., and J.P. Megonigal. 2013. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504 (7478): 53–60.

    Article  CAS  Google Scholar 

  • Krauss, K.W., and M.J. Osland. 2020. Tropical cyclones and the organization of mangrove forests: a review. Annals of Botany 125 (2): 213–234.

    Google Scholar 

  • Lovelock, C.E., M.F. Adame, V. Bennion, M. Hayes, R. Reef, N. Santini, and D.R. Cahoon. 2015. Sea level and turbidity controls on mangrove soil surface elevation change. Estuarine, Coastal and Shelf Science 153: 1–9. https://doi.org/10.1016/j.ecss.2014.11.026.

    Article  Google Scholar 

  • McKee, K.L. 2011. Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuarine, Coastal and Shelf Science 91 (4): 475–483. https://doi.org/10.1016/j.ecss.2010.05.001.

    Article  Google Scholar 

  • McKee, K.L., D.R. Cahoon, and I.C. Feller. 2007. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography 16 (5): 545–556. https://doi.org/10.1111/j.1466-8238.2007.00317.x.

    Article  Google Scholar 

  • Morris, J.T., P.V. Sundareshwar, C.T. Nietch, B. Kjerfve, and D.R. Cahoon. 2002. Responses of coastal wetlands to rising sea level. Ecology 83 (10): 2869–2877. https://doi.org/10.1890/0012-9658(2002)083[2869:ROCWTR]2.0.CO;2.

    Article  Google Scholar 

  • Morris, J.T., D.C. Barber, J. Callaway, R. Chambers, S.C. Hagen, B.J. Johnson, P. Megonigal, S.C. Neubauer, T. Troxler, and C. Wigand. 2016. A synthesis of sediment bulk density and loss on ignition data from coastal wetlands: the limits of vertical accretion. Earth’s Future 4 (4): 110–121.

    Article  Google Scholar 

  • Nyman, J.A., R.J. Walters, R.D. Delaune, and W.H. Patrick. 2006. Marsh vertical accretion via vegetative growth. Estuarine Coastal and Shelf Science 69 (3-4): 370–380.

    Article  Google Scholar 

  • Osland, M.J., R.H. Day, C.T. Hall, M.D. Brumfield, J.L. Dugas, and W.R. Jones. 2017. Mangrove expansion and contraction at a poleward range limit: climate extremes and land-ocean temperature gradients. Ecology 98 (1): 125–137. https://doi.org/10.1002/ecy.1625.

    Article  Google Scholar 

  • Osland, M.J., L.C. Feher, G.H. Anderson, W.C. Vervaeke, K.W. Krauss, K.R.T. Whelan, K.M. Balentine, G. Tiling-Range, T.J. Smith III, and D.R. Cahoon. 2020. A tropical cyclone-induced ecological regime shift: mangrove forest conversion to mudflat in Everglades National Park (Florida, USA). Wetlands. 40 (5): 1445–1458. https://doi.org/10.1007/s13157-020-01291-8.

    Article  Google Scholar 

  • Polidoro, B.A., K.E. Carpenter, L. Collins, N.C. Duke, A.M. Ellison, J.C. Ellison, E.J. Farnsworth, E.S. Fernando, K. Kathiresan, N.E. Koedam, S.R. Livingstone, T. Miyagi, G.E. Moore, V. Ngoc Nam, J. Eong Ong, J.H. Primavera, S.G. Salmo III, J.C. Sanciangco, S. Sukardjo, Y. Wang, and J. Wan Hong Yonget. 2010. The loss of species: mangrove extinction risk and geographic areas of global concern. PLoS One 5 (4): e10095. https://doi.org/10.1371/journal.pone.0010095.

    Article  CAS  Google Scholar 

  • Poret, N., R.R. Twilley, V.H. Rivera-Monroy, and C. Coronado-Molina. 2007. Belowground decomposition of mangrove roots in Florida Coastal Everglades. Estuaries and Coasts 30: 1–6.

    Article  Google Scholar 

  • Richards, D.R., B.S. Thompson, and L. Wijedasa. 2020. Quantifying net loss of global mangrove carbon stocks from 20 years of land cover change. Nature Communications 11 (1): 4260.

    Article  CAS  Google Scholar 

  • Rivera-Monroy, V., and E. Castañeda-Moya. 2018. Water levels from the Shark River Slough and Taylor Slough, Everglades National Park (FCE), South Florida from May 2001 to present. Environmental Data Initiative. https://doi.org/10.6073/pasta/95371e60f1580a4739b1cb79cf3a50fe.

  • Rivera-Monroy, V.H., R.R. Twilley, S.E. Davis III, D.L. Childers, M. Simard, R. Chambers, R. Jaffe, J.N. Boyer, D.T. Rudnick, K. Zhang, E. Castañeda-Moya, S.M.L. Ewe, R.M. Price, C. Coronado-Molina, M. Ross, T.J. Smith III, B. Michot, E. Meselhe, W. Nuttle, T.G. Troxler, and G.B. Noe. 2011. The role of the Everglades Mangrove Ecotone Region (EMER) in regulating nutrient cycling and wetland productivity in South Florida. Critical Reviews in Environmental Science and Technology 41 (sup1): 633–669. https://doi.org/10.1080/10643389.2010.530907.

    Article  CAS  Google Scholar 

  • Rivera-Monroy, V.H., T.M. Danielson, E. Castaneda-Moya, B.D. Marx, R. Travieso, X.C. Zhao, E.E. Gaiser, and L.M. Farfan. 2019. Long-term demography and stem productivity of Everglades mangrove forests (Florida, USA): resistance to hurricane disturbance. Forest Ecology and Management 440: 79–91.

    Article  Google Scholar 

  • Rogers, K., J.J. Kelleway, N. Saintilan, J.P. Megonigal, J.B. Adams, J.R. Holmquist, M. Lu, L. Schile-Beers, A. Zawadzki, D. Mazumder, and C.D. Woodroffe. 2019. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 567 (7746): 91–95. https://doi.org/10.1038/s41586-019-0951-7.

    Article  CAS  Google Scholar 

  • Romigh, M.M., S.E. Davis, V.H. Rivera-Monroy, et al. 2006. Flux of organic carbon in a riverine mangrove wetland in the Florida Coastal Everglades. Hydrobiologia 569 (1): 505–516.

    Article  CAS  Google Scholar 

  • Ross, M., J. Meeder, J. Sah, P. Ruiz, and G. Telesnicki. 2000. The Southeast Saline Everglades revisited: 50 years of coastal vegetation change. Journal of Vegetation Science 11 (1): 101–112. https://doi.org/10.2307/3236781.

    Article  Google Scholar 

  • Rovai, A., R.R. Twilley, E. Castañeda-Moya, P. Riul, M. Cifuentes-Lara, M. Manrow-Villalobos, P.A. Horta, J.C. Simonassi, A.L. Fonseca, and P.R. Pagliosa. 2018. Global controls of carbon storage in mangrove soils. Nature Climate Change 8 (6): 534–538.

    Article  CAS  Google Scholar 

  • Saintilan, N., N.S. Khan, E. Ashe, J.J. Kelleway, K. Rogers, C.D. Woodroffe, and B.P. Horton. 2020. Thresholds of mangrove survival under rapid sea level rise. Science 368 (6495): 1118–1121.

    Article  CAS  Google Scholar 

  • Simard, M., L. Fatoyinbo, C. Smetanka, V.H. Rivera-Monroy, E. Castaneda-Moya, N. Thomas, and T. Van der Stocken. 2019. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nature Geoscience 12 (1): 40–45.

    Article  CAS  Google Scholar 

  • Smith, T.J., III, G.H. Anderson, K. Balentine, G. Tiling, G.A. Ward, and K.R.T. Whelan. 2009. Cumulative impacts of hurricanes on Florida mangrove ecosystems: sediment deposition, storm surges and vegetation. Wetlands 29 (1): 24–34.

    Article  Google Scholar 

  • Smoak, J.M., J.L. Breithaupt, T.J. Smith, and C.J. Sanders. 2013. Sediment accretion and organic carbon burial relative to sea-level rise and storm events in two mangrove forests in Everglades National Park. Catena 104: 58–66. https://doi.org/10.1016/j.catena.2012.10.009.

    Article  CAS  Google Scholar 

  • Thomas, N., R. Lucas, P. Bunting, A. Hardy, A. Rosenqvist, and M. Simard. 2017. Distribution and drivers of global mangrove forest change, 1996–2010. PLoS One 12 (6): e0179302. https://doi.org/10.1371/journal.pone.0179302.

    Article  CAS  Google Scholar 

  • Twilley, R.R., A.E. Lugo, and C. Patterson-Zucca. 1986. Litter production and turnover in basin mangrove forests in Southwest Florida. Ecology 67 (3): 670–683.

    Article  Google Scholar 

  • Walsh, K.J., J.L. McBride, P.J. Klotzbach, S. Balachandran, S.J., Camargo, G. Holland, T.R. Knutson, J.P.Kossin, T. Lee, A. Sobel and M. Sugi. 2016. Tropical cyclones and climate change. WIREs Climate Change 7: 65–89. doi:https://doi.org/10.1002/wcc.371, 1.

  • Wang, F., X. Lu, C.J. Sanders, and J. Tang. 2019. Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States. Nature Communications 10 (1): 5434. https://doi.org/10.1038/s41467-019-13294-z.

    Article  CAS  Google Scholar 

  • Ward, R.D., D.A. Friess, R.H. Day, and R.A. Mackenzie. 2016. Impacts of climate change on mangrove ecosystems: a region by region overview. Ecosystem Health and Sustainability 2 (4): 4. https://doi.org/10.1002/ehs2.1211.

    Article  Google Scholar 

  • Wdowinski, S., R. Bray, B. Kirtman, and Z. Wu. 2016. Increasing flooding hazard in coastal communities due to rising sea level: case study of Miami Beach, Florida. Ocean and Coastal Management 126: 1–8. https://doi.org/10.1016/j.ocecoaman.2016.03.002.

    Article  Google Scholar 

  • Webster, P.J., G.J. Holland, J.A. Curry, and H.R. Chang. 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309 (5742): 1844–1846.

    Article  CAS  Google Scholar 

  • Whelan, K.R.T., T.J. Smith, G.H. Anderson, and M.L. Ouellette. 2009. Hurricane Wilma’s impact on overall soil elevation and zones within the soil profile in a mangrove forest. Wetlands 29 (1): 16–23.

    Article  Google Scholar 

  • Woodroffe, C. 1992. Mangrove sediments and geomorphology. In Tropical mangrove ecosystems, ed. A.I. Robertson and D.M. Alongi, 7–41. Washington DC: American Geophysical Union.

    Chapter  Google Scholar 

  • Yao, Q., and K.B. Liu. 2017. Dynamics of marsh-mangrove ecotone since the mid-Holocene: a palynological study of mangrove encroachment and sea level rise in the Shark River estuary, Florida. PLoS One 12 (3): e0173670.

    Article  Google Scholar 

  • Zhao, X.C., V.H. Rivera-Monroy, H.Q. Wang, Z.G. Xue, C.F. Tsai, C.S. Willson, E. Castaneda-Moya, and R.R. Twilley. 2020. Modeling soil porewater salinity in mangrove forests (Everglades, Florida, USA) impacted by hydrological restoration and a warming climate. Ecological Modelling 436.

Download references

Acknowledgments

An oral presentation of this work was given at the CERF conference in Mobile, AL in 2019 and was recorded in musical form here: https://www.youtube.com/watch?v=BfYOn5xUpDI&. We thank Rafael Travieso for field assistance and Josh Breithaupt and an anonymous reviewer for comments that greatly improved the manuscript. We thank the Everglades National Park for granting research permits and the Florida Bay Interagency Science Center-Everglades National Park (FBISC-ENP) for logistic support during the study. This is contribution #997 from the Southeast Environmental Research Center in the Institute of Environment at Florida International University.

Funding

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Grants No. DEB-9910514, No. DBI-0620409, No. DEB-1237517 and No. DEB-1832229. VHRM participation was supported by the US Department of the Interior–South Central Climate Adaptation Science Center, Cooperative Agreement#G12 AC00002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randolph M. Chambers.

Additional information

Communicated by Arnoldo Valle-Levinson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chambers, R.M., Gorsky, A.L., Castañeda-Moya, E. et al. Evaluating a Steady-State Model of Soil Accretion in Everglades Mangroves (Florida, USA). Estuaries and Coasts 44, 1469–1476 (2021). https://doi.org/10.1007/s12237-020-00883-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-020-00883-1

Keywords

Navigation