Does the Size Structure of Venerid Clam Populations Affect Ecosystem Functions on Intertidal Sandflats?

Abstract

Estuaries are hotspots for biogeochemical cycling, with bivalves integral to many ecosystem functions. Anthropogenic activities often cause reductions in biomass and abundance of key bivalve species in estuaries worldwide. Large bivalves are particularly vulnerable due to their slow growth, low replacement rates and propensity for being overharvested; however, there is a paucity of studies on how declines in bivalve size and density affect ecosystem functions. An in situ manipulative experiment was conducted on a New Zealand intertidal sandflat in late summer (March to May 2017) to investigate changes in ecosystem functions (sediment nutrient regeneration, primary production, community metabolism and microbial activity) across a biomass gradient (0–4 kg wet weight m−2) of small (shell length (SL) < 25 mm) and large (SL > 30 mm) venerid clams (Austrovenus stutchburyi). Bird predation reduced the biomass of small clams, so ecosystem functions were normalised to per kilogramme of wet weight. Small clams significantly increased gross primary production by ~ 3× and net primary production by ~ 7× compared with large clams. Small clams also doubled activity rates of microbial enzymes associated with nutrient cycling and organic matter breakdown (leucine aminopeptidase and alkaline phosphatase). By contrast, nitrate/nitrite flux was significantly greater with large clams. Macrofaunal species diversity and mud content also influenced benthic nutrient cycling, possibly due to increased sediment reworking that alters solute flux rates. Results demonstrate how different size classes of venerid clams influence complementary ecosystem functions. Accordingly, a skewed size class distribution of bivalves will reduce the productivity and functioning of intertidal sandflats.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Adkins, S.C., I.D. Marsden, and J.G. Pirker. 2014. Variation in population structure and density of Austrovenus stutchburyi (Veneridae) from Canterbury, New Zealand. Journal of Shellfish Research 33: 343–354. https://doi.org/10.2983/035.033.0204.

    Article  Google Scholar 

  2. Airoldi, L., and M.W. Beck. 2007. Loss, status and trends for coastal marine habitats of Europe. Oceanography and Marine Biology 45: 345–405. https://doi.org/10.1201/9781420050943.

    Article  Google Scholar 

  3. Baltar, F., X.A.G. Morán, and C. Lønborg. 2017. Warming and organic matter sources impact the proportion of dissolved to total activities in marine extracellular enzymatic rates. Biogeochemistry 133: 307–316. https://doi.org/10.1007/s10533-017-0334-9.

    CAS  Article  Google Scholar 

  4. Bell, C.W., B.E. Fricks, J.D. Rocca, J.M. Steinweg, S.K. McMahon, and M.D. Wallenstein. 2013. High-throughput fluorometric measurement of potential soil extracellular enzyme activities. Journal of Visualized Experiments 81: 1–16. https://doi.org/10.3791/50961.

    CAS  Article  Google Scholar 

  5. Belley, R., and P.V.R. Snelgrove. 2016. Relative contributions of biodiversity and environment to benthic ecosystem functioning. Frontiers in Marine Science 3: 242. https://doi.org/10.3389/fmars.2016.00242.

    Article  Google Scholar 

  6. Belley, R., P.V.R. Snelgrove, P. Archambault, and S.K. Juniper. 2016. Environmental drivers of benthic flux variation and ecosystem functioning in Salish Sea and Northeast Pacific sediments. PLoS One 11: e0151110. https://doi.org/10.1371/journal.pone.0151110.

    CAS  Article  Google Scholar 

  7. Böer, S.I., C. Arnosti, J.E.E. van Beusekom, and A. Boetius. 2009. Temporal variations in microbial activities and carbon turnover in subtidal sandy sediments. Biogeosciences Discussions 5: 4271–4313. https://doi.org/10.5194/bgd-5-4271-2008.

  8. Bolam, S.G., T.F. Fernandes, and M. Huxham. 2002. Diversity, biomass, and ecosystem processes in the marine benthos. Ecological Monographs 72: 599–615. https://doi.org/10.1890/0012-9615(2002)072[0599:DBAEPI]2.0.CO;2.

    Article  Google Scholar 

  9. Boschker, H.T.S., and T.E. Cappenberg. 1998. Patterns of extacellular enzyme activities in littoral sediments of Lake Gooimeer. The Netherlands. FEMS Microbiology Ecology 25: 79–86. https://doi.org/10.1111/j.1574-6941.1998.tb00461.x.

    CAS  Article  Google Scholar 

  10. Braeckman, U., P.R. Provoost, B. Gribsholt, D. Van Gansbeke, J.J. Middelburg, K. Soetaert, M. Vincx, and J. Vanaverbeke. 2010. Role of macrofauna functional traits and density in biogeochemical fluxes and bioturbation. Marine Ecology Progress Series 399: 173–186. https://doi.org/10.3354/meps08336.

    CAS  Article  Google Scholar 

  11. Clarke, K.R. Gorley, R.N. 2015. PRIMER v7: user manual/tutorial, Plymouth.

  12. Van Colen, C., S.F. Thrush, S. Parkes, R. Harris, S.A. Woodin, D.S. Wethey, C.A. Pilditch, J.E. Hewitt, A.M. Lohrer, and M. Vincx. 2015. Bottom-up and top-down mechanisms indirectly mediate interactions between benthic biotic ecosystem components. Journal of Sea Research 98. Elsevier B.V.: 42–48. https://doi.org/10.1016/j.seares.2014.10.016.

    Article  Google Scholar 

  13. Cummings, V., J. Hewitt, J. Halliday, and G. Mackay. 2007. Optimizing the success of Austrovenus stutchburyi restoration: Preliminary investigations in a New Zealand estuary. Journal of Shellfish Research 26: 89–100. https://doi.org/10.2983/0730-8000(2007)26[89:OTSOAS]2.0.CO;2.

    Article  Google Scholar 

  14. Cummings, V., K. Vopel, and S. Thrush. 2009. Terrigenous deposits in coastal marine habitats: influences on sediment geochemistry and behaviour of post-settlement bivalves. Marine Ecology Progress Series 383: 173–185. https://doi.org/10.3354/meps07983.

    CAS  Article  Google Scholar 

  15. Dame, R. 2012. Ecology of marine bivalves: an ecosystem approach. 2nd ed. London: CRC Press, Taylor and Francis Group. https://doi.org/10.1201/9781420049787.

    Google Scholar 

  16. Douglas, E.J., C.A. Pilditch, A.M. Lohrer, C. Savage, L.A. Schipper, and S.F. Thrush. 2018. Sedimentary environment influences ecosystem response to nutrient enrichment. Estuaries and Coasts 41: 1994–2008. https://doi.org/10.1007/s12237-018-0416-5.

    CAS  Article  Google Scholar 

  17. Emmerson, M.C., M. Solan, C. Emes, D.M. Paterson, and D. Raffaelli. 2001. Consistent patterns and the idiosyncratic effects of biodiversity in marine ecosystems. Nature 411: 73–77. https://doi.org/10.1038/350750553.

    CAS  Article  Google Scholar 

  18. Gammal, J., M. Järnström, G. Bernard, J. Norkko, and A. Norkko. 2019. Environmental context mediates biodiversity–ecosystem functioning relationships in coastal soft-sediment habitats. Ecosystems 22: 137–151. https://doi.org/10.1007/s10021-018-0258-9.

    Article  Google Scholar 

  19. Gongol, C., and C. Savage. 2016. Spatial variation in rates of benthic denitrification and environmental controls in four New Zealand estuaries. Marine Ecology Progress Series 556: 59–77. https://doi.org/10.3354/meps11865.

    CAS  Article  Google Scholar 

  20. Hill, B.H., C.M. Elonen, L.E. Anderson, and J.C. Lehrter. 2014. Microbial respiration and ecoenzyme activity in sediments from the Gulf of Mexico hypoxic zone. Aquatic Microbial Ecology 72: 105–116. https://doi.org/10.3354/ame01689.

    Article  Google Scholar 

  21. Hiroki, M.A., S.A. Nohara, K.B. Hanabishi, H.A. Utagawa, T.A. Yabe, and K.A. Satake. 2007. Enzymatic evaluation of decomposition in mosaic landscapes of a tidal flat ecosystem. Wetlands 27: 399–405. https://doi.org/10.1672/0277-5212(2007)27[399:EEODIM]2.0.CO;2.

    Article  Google Scholar 

  22. Hoppe, H.G., C. Arnosti, and G.J. Herndl. 2002. Ecological significance of bacterial enzymes in the marine environment. In Enzymes in the environment: Activity, ecology, and applications, ed. R.P. Burns and R.G. Dick, 85–125. New York: Marcel Dekker. https://doi.org/10.1201/9780203904039.ch3.

    Google Scholar 

  23. Hoppe, H.G. 1983. Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Marine Ecology Progress Series 11: 299–308.

    CAS  Article  Google Scholar 

  24. Huettel, M., H. Roy, E. Precht, and S. Ehrenhauss. 2003. Hydrodynamical impact on biogeochemical processes in aquatic sediments. Hydrobiologia 494: 231–236. https://doi.org/10.1007/978-1-4020-5478-5.

    CAS  Article  Google Scholar 

  25. Huettel, M., P. Berg, and J.E. Kostka. 2014. Benthic exchange and biogeochemical cycling in permeable sediments. Annual Review of Marine Science 6: 23–51. https://doi.org/10.1146/annurev-marine-051413-012706.

    Article  Google Scholar 

  26. Jackson, C.R., H.L. Tyler, and J.J. Millar. 2013. Determination of microbial extracellular enzyme activity in waters, soils, and sediments using high throughput microplate assays. Journal of Visualized Experiments 80: 1–9. https://doi.org/10.3791/50399.

    CAS  Article  Google Scholar 

  27. Jones, H.F.E., C.A. Pilditch, D.A. Bruesewitz, and A.M. Lohrer. 2011a. Sedimentary environment influences the effect of an infaunal suspension feeding bivalve on estuarine ecosystem function. PLoS One 6: e27065. https://doi.org/10.1371/journal.pone.0027065.

    CAS  Article  Google Scholar 

  28. Jones, H.F.E., C.A. Pilditch, K.R. Bryan, and D.P. Hamilton. 2011b. Effects of infaunal bivalve density and flow speed on clearance rates and near-bed hydrodynamics. Journal of Experimental Marine Biology and Ecology 401. Elsevier B.V.: 20–28. https://doi.org/10.1016/j.jembe.2011.03.006.

    Article  Google Scholar 

  29. Karlson, A.M.L., C. Niemand, C. Savage, and C.A. Pilditch. 2016. Density of key-species determines efficiency of macroalgae detritus uptake by intertidal benthic communities. PLoS One 11: e0158785. https://doi.org/10.1371/journal.pone.0158785.

    CAS  Article  Google Scholar 

  30. King, Gary M. 1986. Characterization of beta-glucosidase activity in intertidal marine sediments. Applied and Environmental Microbiology 51 (2): 373–380.

    CAS  Article  Google Scholar 

  31. Kraeuter, J. N. 2001. Chapter 11 predators and predation. In Biology of the Hard Clam, ed. J. N. Kraeuter and M. Castagna, 31:441–589. Developments in Aquaculture and Fisheries Science. Elsevier. doi: https://doi.org/10.1016/S0167-9309(01)80039-9.

  32. Kristensen, E., M. Delefosse, C.O. Quintana, M.R. Flindt, and T. Valdemarsen. 2014. Influence of benthic macrofauna community shifts on ecosystem functioning in shallow estuaries. Frontiers in Marine Science 1: 1–14. https://doi.org/10.3389/fmars.2014.00041.

    Article  Google Scholar 

  33. Levin, L.A., D.F. Boesch, A. Covich, C. Dahm, C. Erséus, K.C. Ewel, R.T. Kneib, A. Moldenke, M.A. Palmer, P. Snelgrove, D. Strayer, and J.M. Weslawski. 2001. The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems 4: 430–451. https://doi.org/10.1007/s10021-001-0021-4.

    CAS  Article  Google Scholar 

  34. Lezcano, G. M. G., Stein, L., Kehribar, M., Eynck, C., and Gessner, L.. 2016. The correlation between size and burying depth and its effect on predation of cockles C. edule. doi:https://doi.org/10.13140/RG.2.1.2717.9281.

  35. Lohrer, A.M., S.F. Thrush, and M.M. Gibbs. 2004. Bioturbators enhance ecosystem function through complex biogeochemical interactions. Nature 431: 1092–1095. https://doi.org/10.1038/nature03042.

    CAS  Article  Google Scholar 

  36. Lohrer, A.M., N.J. Halliday, S.F. Thrush, J.E. Hewitt, and I.F. Rodil. 2010. Ecosystem functioning in a disturbance-recovery context: Contribution of macrofauna to primary production and nutrient release on intertidal sandflats. Journal of Experimental Marine Biology and Ecology 390: 6–13. https://doi.org/10.1016/j.jembe.2010.04.035.

    Article  Google Scholar 

  37. Lohrer, A.M., M. Townsend, I.F. Rodil, J.E. Hewitt, and S.F. Thrush. 2012. Detecting shifts in ecosystem functioning: The decoupling of fundamental relationships with increased pollutant stress on sandflats. Marine Pollution Bulletin 64: 2761–2769. https://doi.org/10.1016/j.marpolbul.2012.09.012.

    CAS  Article  Google Scholar 

  38. Lotze, H.K., H.S. Lenihan, B.J. Bourque, R.H. Bradbury, R.G. Cooke, M.C. Kay, S.M. Kidwell, M.X. Kirby, C.H. Peterson, and J.B.C. Jackson. 2006. Depletion degradation, and recovery potential of estuaries and coastal seas. Science 312: 1806–1809. https://doi.org/10.1126/science.1128035.

    CAS  Article  Google Scholar 

  39. Mackin, J.E., and R.C. Aller. 1984. Ammonium adsorption in marine-sediments. Limnology and Oceanography 29: 250–257. https://doi.org/10.4319/lo.1984.29.2.0250.

    CAS  Article  Google Scholar 

  40. MacTavish, T., J. Stenton-Dozey, K. Vopel, and C. Savage. 2012. Deposit-feeding sea cucumbers enhance mineralization and nutrient cycling in organically-enriched coastal sediments. PLoS One 7: e50031. https://doi.org/10.1371/journal.pone.0050031.

    CAS  Article  Google Scholar 

  41. Maher, D. T., and B. D. Eyre. 2010. Benthic fluxes of dissolved organic carbon in three temperate Australian estuaries: Implications for global estimates of benthic DOC fluxes. Journal of Geophysical Research: Biogeosciences 115. doi:https://doi.org/10.1029/2010JG001433.

  42. Mayer, L.M. 1989. Extracellular proteolytic enzyme activity in sediments of an intertidal mudflat. Limnology and Oceanography 34: 973–981. https://doi.org/10.4319/lo.1989.34.6.0973.

    CAS  Article  Google Scholar 

  43. Mermillod-Blondin, F., R. Rosenberg, F. François-Carcaillet, K. Norling, and L. Mauclaire. 2004. Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediment. Aquatic Microbial Ecology 36: 271–284. https://doi.org/10.3354/ame036271.

    Article  Google Scholar 

  44. Mermillod-Blondin, F., F. François-Carcaillet, and R. Rosenberg. 2005. Biodiversity of benthic invertebrates and organic matter processing in shallow marine sediments: an experimental study. Journal of Experimental Marine Biology and Ecology 315: 187–209. https://doi.org/10.1016/j.jembe.2004.09.013.

    Article  Google Scholar 

  45. Norkko, A., J.E. Hewitt, S.F. Thrush, and G.A. Funnell. 2001. Benthic-pelagic coupling and suspension-feeding bivalves: linking site-specific sediment flux and biodeposition to benthic community structure. Limnology and Oceanography 46: 2067–2072. https://doi.org/10.4319/lo.2001.46.8.2067.

    Article  Google Scholar 

  46. Norkko, A., A. Villnäs, J. Norkko, S. Valanko, and C. Pilditch. 2013. Size matters: implications of the loss of large individuals for ecosystem function. Scientific Reports 3: 2646. https://doi.org/10.1038/srep02646.

    Article  Google Scholar 

  47. Norling, K., R. Rosenberg, S. Hulth, A. Grémare, and E. Bonsdorff. 2007. Importance of functional biodiversity and species-specific traits of benthic fauna for ecosystem functions in marine sediment. Marine Ecology Progress Series 332: 11–23. https://doi.org/10.3354/meps332011.

    CAS  Article  Google Scholar 

  48. Norris, K.E.N., and I.A.N. Johnstone. 1998. The functional response of oystercatchers (Haematopus ostralegus) searching for cockles (Cerastoderma edule) by touch. Journal of Animal Ecology 67: 329–346. https://doi.org/10.1046/j.1365-2656.1998.00196.x.

    Article  Google Scholar 

  49. Oni, O.E., F. Schmidt, T. Miyatake, S. Kasten, M. Witt, K.U. Hinrichs, and M.W. Friedrich. 2015. Microbial communities and organic matter composition in surface and subsurface sediments of the Helgoland mud area, North Sea. Frontiers in Microbiology 6: 1–16. https://doi.org/10.3389/fmicb.2015.01290.

    Article  Google Scholar 

  50. Pratt, D.R., A.M. Lohrer, C.A. Pilditch, and S.F. Thrush. 2013a. Changes in ecosystem function across sedimentary gradients in estuaries. Ecosystems 17: 182–194. https://doi.org/10.1007/s10021-013-9716-6.

    Article  Google Scholar 

  51. Pratt, D.R., C.A. Pilditch, A.M. Lohrer, and S.F. Thrush. 2013b. The effects of short-term increases in turbidity on sandflat microphytobenthic productivity and nutrient fluxes. Journal of Sea Research 92: 170–177. https://doi.org/10.1016/j.seares.2013.07.009.

    Article  Google Scholar 

  52. Pratt, D.R., A.M. Lohrer, S.F. Thrush, J.E. Hewitt, M. Townsend, K. Cartner, C.A. Pilditch, R.J. Harris, C. Van Colen, and I.F. Rodil. 2015. Detecting subtle shifts in ecosystem functioning in a dynamic estuarine environment. PLoS One 10. https://doi.org/10.1371/journal.pone.0133914.

  53. Reiss, J., J.R. Bridle, J.M. Montoya, and G. Woodward. 2009. Emerging horizons in biodiversity and ecosystem functioning research. Trends in Ecology & Evolution 24: 505–514. https://doi.org/10.1016/j.tree.2009.03.018.

    Article  Google Scholar 

  54. Rossi, R., B. Gribsholt, J.J. Middelburg, and C. Heip. 2008. Context-dependent effects of suspension feeding on intertidal ecosystem functioning. Marine Ecology Progress Series 354: 47–57. https://doi.org/10.3354/meps07213.

    CAS  Article  Google Scholar 

  55. Rutten, A.L., K. Oosterbeek, B.J. Ens, and S. Verhulst. 2006. Optimal foraging on perilous prey: Risk of bill damage reduces optimal prey size in oystercatchers. Behavioral Ecology 17: 297–302. https://doi.org/10.1093/beheco/arj029.

    Article  Google Scholar 

  56. Sandwell, D.R., C.A. Pilditch, and A.M. Lohrer. 2009. Density dependent effects of an infaunal suspension-feeding bivalve (Austrovenus stutchburyi) on sandflat nutrient fluxes and microphytobenthic productivity. Journal of Experimental Marine Biology and Ecology 373. Elsevier B.V.: 16–25. https://doi.org/10.1016/j.jembe.2009.02.015.

    Article  Google Scholar 

  57. Sinsabaugh, R.L., B.H. Hill, and J.J. Follstad Shah. 2009. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462: 795–798. https://doi.org/10.1038/nature08632.

    CAS  Article  Google Scholar 

  58. Snelgrove, P.V.R. 1998. The biodiversity of macrofaunal organisms in marine sediments. Biodiversity and Conservation 7: 1123–1132. https://doi.org/10.1023/A:1008867313340.

    Article  Google Scholar 

  59. Snelgrove, P.V.R., P.A. Hutchings, D.M. Alongi, H. Hummel, G. King, I. Koike, N.B. Ramsing, and V. Solis-Weiss. 1997. The importance of marine sediment biodiversity in ecosystem processes. Ambio 26: 578–583. https://doi.org/10.2307/4314672.

    Article  Google Scholar 

  60. Snelgrove, P.V.R., S.F. Thrush, D.H. Wall, and A. Norkko. 2014. Real world biodiversity-ecosystem functioning: a seafloor perspective. Trends in Ecology & Evolution 29. Elsevier Ltd: 398–405. https://doi.org/10.1016/j.tree.2014.05.002.

    Article  Google Scholar 

  61. Solan, M., B.J. Cardinale, A.L. Downing, K.A.M. Engelhardt, J.L. Ruesink, and D.S. Srivastava. 2004. Extinction and ecosystem function in the marine benthos. Science 306: 1177–1180. https://doi.org/10.1126/science.1103960.

    CAS  Article  Google Scholar 

  62. Thrush, S.F., J.E. Hewitt, M. Gibbs, C. Lundquist, and A. Norkko. 2006. Functional role of large organisms in intertidal communities: community effects and ecosystem function. Ecosystems 9: 1029–1040. https://doi.org/10.1007/s10021-005-0068-8.

    Article  Google Scholar 

  63. Villnäs, A., J. Norkko, K. Lukkari, J. Hewitt, and A. Norkko. 2012. Consequences of increasing hypoxic disturbance on benthic communities and ecosystem functioning. PLoS One 7: e44920. https://doi.org/10.1371/journal.pone.0044920.

    CAS  Article  Google Scholar 

  64. Wells, S. R., L. C. Wing, A. M. Smith, and I. W.G. Smith. 2019. Historical changes in bivalve growth rates indicate ecological consequences of human occupation in estuaries. Aquatic Conservation: Marine and Freshwater Ecosystems: 1–14. doi:https://doi.org/10.1002/aqc.3039.

  65. Woodin, S.A., N. Volkenborn, C.A. Pilditch, A.M. Lohrer, D.S. Wethey, J.E. Hewitt, and S.F. Thrush. 2016. Same pattern, different mechanism: locking onto the role of key species in seafloor ecosystem process. Scientific Reports 6: 26678. https://doi.org/10.1038/srep26678.

    CAS  Article  Google Scholar 

  66. Zaklan, S.D., and R. Ydenberg. 1997. The body size-burial depth relationship in the infaunal clam Mya arenaria. Journal of Experimental Marine Biology and Ecology 215: 1–17. https://doi.org/10.1016/S0022-0981(97)00021-X.

    Article  Google Scholar 

  67. Zwarts, L., and J. Wanink. 1989. Siphon size and burying depth in deposit- and suspension-feeding benthic bivalves. Marine Biology 100: 227–240. https://doi.org/10.1007/BF00391963.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank everyone involved in the field sampling and laboratory work, Jack Hall, Sorrel O’Connell-Milne, Stina Kolodzey and Linda Groenewegen. We gratefully acknowledge the two anonymous reviewers whose comments and feedback greatly improved the manuscript.

Funding

This work was funded by Sustainable Seas New Zealand Tipping Points project (CO1X1515), Environment Southland and a scholarship from the New Zealand Coastal Society.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Samuel Thomas.

Additional information

Communicated by Judy Grassle

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thomas, S., Pilditch, C.A., Thrush, S.F. et al. Does the Size Structure of Venerid Clam Populations Affect Ecosystem Functions on Intertidal Sandflats?. Estuaries and Coasts (2020). https://doi.org/10.1007/s12237-020-00774-5

Download citation

Keywords

  • Bivalve shell length
  • Estuary
  • Extracellular enzyme activity
  • Benthic primary production
  • Nutrient regeneration
  • New Zealand