Skip to main content

Advertisement

Log in

Methane Dynamics Associated with Tidal Processes in the Lower Columbia River

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Tidally varying methane (CH4) concentrations in estuaries may arise from physical advection and by chemical effects tied to varying exposure to salinity. An investigation of spatial and temporal variability in water-column CH4 was conducted in the lower Columbia River using shipboard surveys and time series data from fixed stations. Peaks in CH4 coincided with ebb tides at multiple sites located along the flank of the estuary adjacent to tidal flats and wetlands. High-resolution measurements taken at the outflow of a shallow lateral bay revealed that these CH4 peaks were positively related to tidal amplitude when the lateral bay was exposed exclusively to freshwater over the tide cycle; in contrast, this relationship was inversed when brackish waters were involved. A positive relationship between tidal amplitude and CH4 is consistent with a mechanism of tidal pumping from bottom sediments in the bay. In the presence of saltwater, however, a higher-than-expected flux of CH4 could occur via suppression of removal processes such as biological oxidation. We present a conceptual model of tidal pumping modified by diurnal inequality in tidal amplitude and effects of salinity on sediment CH4 oxidation to explain CH4 variability on tidal to seasonal time-scales. The combined influences of tides and salinity likely affect CH4 emissions in estuaries worldwide, making sea level rise and estuarine geomorphological change relevant factors for consideration when accounting for estuarine contributions to global methane budgets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anthony, S.E., F.G. Prahl, and T.D. Peterson. 2012. Methane dynamics in the Willamette River, Oregon. Limnology and Oceanography 57 (5): 1517–1530. https://doi.org/10.4319/lo.2012.57.5.1517.

    Article  CAS  Google Scholar 

  • Baptista, A.M., C. Seaton, M.P. Wilkin, S.F. Riseman, J.A. Needoba, D. Maier, P.J. Turner, T. Kärnä, J.E. Lopez, L. Herfort, V.M. Megler, C. McNeil, B.C. Crump, T.D. Peterson, Y.H. Spitz, and H.M. Simon. 2015. Infrastructure for collaborative science and societal applications in the Columbia River estuary. Frontiers Of Earth Science 9 (4): 659–682. https://doi.org/10.1007/s11707-015-0540-5.

    Article  Google Scholar 

  • Barbosa, P.M., J.M. Melack, V.F. Farjalla, J.H.F. Amaral, V. Scofield, and B.R. Forsberg. 2016. Diffusive methane fluxes from Negro, Solimões and Madeira rivers and fringing lakes in the Amazon basin. Limnology and Oceanography 61 (S1): S221–S237. https://doi.org/10.1002/lno.10358.

    Article  CAS  Google Scholar 

  • Bartlett, K.B., D.S. Bartlett, R.C. Harriss, and D.I. Sebacher. 1987. Methane emissions along a salt marsh salinity gradient. Biogeochemistry 4 (3): 183–202.

    Article  CAS  Google Scholar 

  • Bastviken, D., L.J. Tranvik, J.A. Downing, P.M. Crill, A. Enrich-prast, D. Bastviken, L.J. Tranvik, J.A. Downing, P.M. Crill, and A. Enrich-prast. 2011. Freshwater methane emissions offset the continental carbon sink. Science 331: 50–50. https://doi.org/10.1126/science.1196808.

    Article  CAS  Google Scholar 

  • Bates, N.R., T. Takahashi, D.W. Chipman, and A.H. Knap. 1998. Variability of pCO2 on diel to seasonal timescales in the Sargasso Sea near Bermuda. Journal of Geophysical Research 103 (C8): 15567–15585.

    Article  CAS  Google Scholar 

  • Borges, A.V., and G. Abril. 2012. Carbon dioxide and methane dynamics in estuaries. In Treatise On Estuarine And Coastal Science Volume 5: Biogeochemistry, ed. E. Wolanski and D. McLusky, 119–161. Cambridge: Academic Press.

    Google Scholar 

  • Borges, A.V., B. Delille, L.-S. Schiettecatte, F. Gazeau, G. Abril, and M. Frankingnoulle. 2004. Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt and Thames). Limnology and Oceanography 49 (5): 1630–1641.

    Article  CAS  Google Scholar 

  • Borges, A.V., F. Darchambeau, C.R. Teodoru, T.R. Marwick, F. Tamooh, N. Geeraert, F.O. Omengo, F. Guérin, T. Lambert, C. Morana, E. Okuku, and S. Bouillon. 2015. Globally significant greenhouse-gas emissions from African inland waters. Nature Geoscience 8 (8): 637–642. https://doi.org/10.1038/ngeo2486.

    Article  CAS  Google Scholar 

  • Borges, A.V., G. Abril, and S. Bouillon. 2018a. Carbon dynamics and CO_2 and CH_4 outgassing in the Mekong delta. Biogeosciences 15 (4): 1093–1114. https://doi.org/10.5194/bg-15-1093-2018.

    Article  CAS  Google Scholar 

  • Borges, A.V., F. Darchambeau, T. Lambert, S. Bouillon, C. Morana, S. Brouyère, V. Hakoun, A. Jurado, H.C. Tseng, J.P. Descy, and F.A.E. Roland. 2018b. Effects of agricultural land use on fluvial carbon dioxide, methane and nitrous oxide concentrations in a large European river, the Meuse (Belgium). Science of the Total Environment 610–611: 342–355. https://doi.org/10.1016/j.scitotenv.2017.08.047.

    Article  CAS  Google Scholar 

  • Bricker, S.B., B. Longstaff, W. Dennison, A. Jones, K. Boicourt, C. Wicks, and J. Woerner. 2007. Effects of nutrient enrichment in the nation’s estuaries: a decade of change. In NOAA Coastal Ocean Program Decision Analysis Series No. 26.

    Google Scholar 

  • Bridgham, S.D., H. Cadillo-Quiroz, J.K. Keller, and Q. Zhuang. 2013. Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology 19 (5): 1325–1346. https://doi.org/10.1111/gcb.12131.

    Article  Google Scholar 

  • Bussmann, I. 2013. Distribution of methane in the Lena Delta and Buor-Khaya Bay, Russia. Biogeosciences 10 (7): 4641–4652. https://doi.org/10.5194/bg-10-4641-2013.

    Article  Google Scholar 

  • Call, M., D.T. Maher, I.R. Santos, S. Ruiz-Halpern, P. Mangion, C.J. Sanders, D.V. Erler, J.M. Oakes, J. Rosentreter, R. Murray, and B.D. Eyre. 2015. Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and spring-neap-spring timescales in a mangrove creek. Geochimica et Cosmochimica Acta 150: 211–225. https://doi.org/10.1016/j.gca.2014.11.023.

    Article  CAS  Google Scholar 

  • Campeau, A., and P.A. Del Giorgio. 2014. Patterns in CH4 and CO2 concentrations across boreal rivers: major drivers and implications for fluvial greenhouse emissions under climate change scenarios. Global Change Biology 20 (4): 1075–1088. https://doi.org/10.1111/gcb.12479.

    Article  Google Scholar 

  • Chambers, L.G., K.R. Reddy, and T.Z. Osborne. 2011. Short-term response of carbon cycling to salinity pulses in a freshwater wetland. Soil Science Society of America Journal 75 (5): 2000–2007. https://doi.org/10.2136/sssaj2011.0026.

    Article  CAS  Google Scholar 

  • Chambers, L.G., T.Z. Osborne, and K.R. Reddy. 2013. Effect of salinity-altering pulsing events on soil organic carbon loss along an intertidalwetland gradient: a laboratory experiment. Biogeochemistry 115 (1-3): 363–383.

    Article  CAS  Google Scholar 

  • Chanton, J.P., C.S. Martens, and C.A. Kelley. 1989. Gas transport from methane-saturated, tidal freshwater and wetland sediments. Limnology and Oceanography 34 (5): 807–819. https://doi.org/10.4319/lo.1989.34.5.0807.

    Article  CAS  Google Scholar 

  • Chawla, A., D.A. Jay, A.M. Baptista, M. Wilkin, and C. Seaton. 2008. Seasonal variability and estuary–shelf interactions in circulation dynamics of a river-dominated estuary. Estuaries and Coasts 31 (2): 269–288. https://doi.org/10.1007/s12237-007-9022-7.

    Article  Google Scholar 

  • Ciais, P., C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell, A. Chhabra, R. DeFries, J. Galloway, M. Heimann, C. Jones, C. Le Quéré, R.B. Myneny, S. Piao, and P. Thornton. 2013. Carbon and Other Biogeochemical Cycles. In Climate Change 2013: The Physical Science Basis. Contribution Of Working Group I To The Fifth Assessment Report Of The Intergovernmental Panel On Climate Change, ed. T.F. Stocker, D. Qin, G.K. Plattner, et al., 465–570. Cambridge: Cambridge University Press.

    Google Scholar 

  • Clark, C.D., P. Aiona, J.K. Keller, and W.J. De Bruyn. 2014. Optical characterization and distribution of chromophoric dissolved organic matter (CDOM) in soil porewater from a salt marsh ecosystem. Marine Ecology Progress Series 516: 71–83. https://doi.org/10.3354/meps10833.

    Article  CAS  Google Scholar 

  • de Angelis, M.A., and M.D. Lilley. 1987. Methane in surface waters of Oregon estuaries and rivers. Limnology and Oceanography 32 (3): 716–722.

    Article  Google Scholar 

  • de Angelis, M.A., and M.I. Scranton. 1993. Fate of methane in the Hudson River and estuary. Global Biogeochemical Cycles 7 (3): 509–523.

    Article  Google Scholar 

  • Deborde, J., P. Anschutz, F. Guérin, D. Poirier, D. Marty, G. Boucher, G. Thouzeau, M. Canton, and G. Abril. 2010. Methane sources, sinks and fluxes in a temperate tidal lagoon: The Arcachon lagoon (SW France). Estuarine, Coastal and Shelf Science 89 (4): 256–266. https://doi.org/10.1016/j.ecss.2010.07.013.

    Article  CAS  Google Scholar 

  • Evans, W., B. Hales, and P.G. Strutton. 2013. pCO2 distributions and air–water CO2 fluxes in the Columbia River estuary. Estuarine, Coastal and Shelf Science 117: 260–272. https://doi.org/10.1016/j.ecss.2012.12.003.

    Article  CAS  Google Scholar 

  • Gilbert, M., J. Needoba, C. Koch, A. Barnard, and A. Baptista. 2013. Nutrient loading and transformations in the Columbia River Estuary determined by high-resolution in situ sensors. Estuaries and Coasts 36 (4): 708–727. https://doi.org/10.1007/s12237-013-9597-0.

    Article  CAS  Google Scholar 

  • Grunwald, M., O. Dellwig, M. Beck, J.W. Dippner, J.A. Freund, C. Kohlmeier, B. Schnetger, and H.-J. Brumsack. 2009. Methane in the southern North Sea: sources, spatial distribution and budgets. Estuarine, Coastal and Shelf Science 81 (4): 445–456. https://doi.org/10.1016/j.ecss.2008.11.021.

    Article  CAS  Google Scholar 

  • Gulzow, W., G. Rehder, B. Schneider, J.S.V. Deimling, and B. Sadkowiak. 2011. A new method for continuous measurement of methane and carbon dioxide in surface waters using off-axis integrated cavity output spectroscopy (ICOS): an example from the Baltic Sea. Limnology and Oceanography: Methods 9 (5): 176–184. https://doi.org/10.4319/lom.2011.9.176.

    Article  CAS  Google Scholar 

  • Hamdan, L.J., and K.P. Wickland. 2016. Methane emissions from oceans, coasts, and freshwater habitats: New perspectives and feedbacks on climate. Limnology and Oceanography 61 (S1): S3–S12. https://doi.org/10.1002/lno.10449.

    Article  CAS  Google Scholar 

  • Hong, B., and J. Shen. 2012. Responses of estuarine salinity and transport processes to potential future sea-level rise in the Chesapeake Bay. Estuarine, Coastal and Shelf Science 104–105: 33–45. https://doi.org/10.1016/j.ecss.2012.03.014.

    Article  CAS  Google Scholar 

  • Hopkinson, C.S., A.E. Giblin, J. Tucker, and R.H. Garritt. 1999. Benthic metabolism and nutrient cycling along an estuarine salinity gradient. Estuaries 22 (4): 863. https://doi.org/10.2307/1353067.

    Article  CAS  Google Scholar 

  • Jay, D.A., and J.D. Smith. 1990. Circulation, density distribution and neap-spring transitions in the Columbia River estuary. Progress in Oceanography 25 (1-4): 81–112. https://doi.org/10.1016/0079-6611(90)90004-L.

    Article  Google Scholar 

  • Jay, D.A., K. Leffler, and Degens Sebastian. 2011a. Long-term evolution of Columbia River tides. Journal of Waterway, Port, Coastal, and Ocean Engineering 137 (4): 182–191.

    Article  Google Scholar 

  • Jay, D.A., K. Leffler, and DegensS. 2011b. Long-term evolution of Columbia River tides. Journal of Waterway, Port, Coastal, and Ocean Engineering 137 (4): 182–191.

    Article  Google Scholar 

  • Jones, J.B., and P.J. Mulholland. 1998a. Influence of drainage basin topography and elevation on carbon dioxide and methane supersaturation of stream water. Biogeochemistry 40 (1): 57–72.

    Article  CAS  Google Scholar 

  • Jones, J.B., and P.J. Mulholland. 1998b. Methane input and evasion in a hardwood forest stream: Effects of subsurface flow from shallow and deep pathways. Limnology and Oceanography 43 (6): 1243–1250.

    Article  CAS  Google Scholar 

  • Kärnä, T., A.M. Baptista, J.E. Lopez, P.J. Turner, C. McNeil, and T.B. Sanford. 2015. Numerical modeling of circulation in high-energy estuaries: a Columbia River estuary benchmark. Ocean Modelling 88: 54–71. https://doi.org/10.1016/j.ocemod.2015.01.001.

    Article  Google Scholar 

  • Kelley, C.A., C.S. Martens, and W. Ussler. 1995. Methane dynamics across a tidally flooded riverbank margin. Limnology and Oceanography 40 (6): 1112–1129. https://doi.org/10.4319/lo.1995.40.6.1112.

    Article  CAS  Google Scholar 

  • Kirschke, S., P. Bousquet, P. Ciais, M. Saunois, J.G. Canadell, E.J. Dlugokencky, P. Bergamaschi, D. Bergmann, D.R. Blake, L. Bruhwiler, P. Cameron-Smith, S. Castaldi, F. Chevallier, L. Feng, A. Fraser, M. Heimann, E.L. Hodson, S. Houweling, B. Josse, P.J. Fraser, P.B. Krummel, J.F. Lamarque, R.L. Langenfelds, C. le Quéré, V. Naik, S. O'Doherty, P.I. Palmer, I. Pison, D. Plummer, B. Poulter, R.G. Prinn, M. Rigby, B. Ringeval, M. Santini, M. Schmidt, D.T. Shindell, I.J. Simpson, R. Spahni, L.P. Steele, S.A. Strode, K. Sudo, S. Szopa, G.R. van der Werf, A. Voulgarakis, M. van Weele, R.F. Weiss, J.E. Williams, and G. Zeng. 2013. Three decades of global methane sources and sinks. Nature Geoscience 6 (10): 813–823. https://doi.org/10.1038/ngeo1955.

    Article  CAS  Google Scholar 

  • Le Mer, J., and P. Roger. 2001. Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology 37 (1): 25–50.

    Article  Google Scholar 

  • Lilley, M.D., M.A. de Angelis, and E.J. Olson. 1996. Methane concentrations and estimated fluxes from Pacific northwest rivers. Mitteilungen Internationale Vereinigung Für Theoretische Und Angewandte Limnologie 25: 187–196.

    Google Scholar 

  • Maher, D.T., K. Cowley, I.R. Santos, P. Macklin, and B.D. Eyre. 2015. Methane and carbon dioxide dynamics in a subtropical estuary over a diel cycle: Insights from automated in situ radioactive and stable isotope measurements. Marine Chemistry 168: 69–79. https://doi.org/10.1016/j.marchem.2014.10.017.

    Article  CAS  Google Scholar 

  • McGinnis, D.F., N. Bilsley, M. Schmidt, P. Fietzek, P. Bodmer, K. Premke, A. Lorke, and S. Flury. 2016. Deconstructing methane emissions from a small northern European river: Hydrodynamics and temperature as key drivers. Environmental Science and Technology 50 (21): 11680–11687. https://doi.org/10.1021/acs.est.6b03268.

    Article  CAS  Google Scholar 

  • Megonigal, J.P., and S.C. Neubauer. 2009. Biogeochemistry of tidal freshwater wetlands. In Coastal Wetlands: An Integrated Ecosystem Approach, ed. G.M.E. Perillo, E. Wolanski, D.R. Cahoon, and M.M. Brinson, 535–562. Amsterdam: Elsevier.

    Google Scholar 

  • Megonigal, J.P., and W.H. Schlesinger. 2002. Methane-limited methanotrophy in tidal freshwater swamps. Global Biogeochemical Cycles 16: 35-1-35–10. https://doi.org/10.1029/2001GB001594.

    Article  CAS  Google Scholar 

  • Middelburg, J.J., J. Nieuwenhuize, N. Iversen, N. Hogh, H. De Wilde, W. Helder, R. Seifert, and O. Christof. 2002. Methane distribution in European tidal estuaries. Biogeochemistry 59 (1/2): 95–119.

    Article  Google Scholar 

  • Morris, A.W., R.F.C. Mantoura, A.J. Bale, and R.J.M. Howland. 1978. Very low salinity regions of estuaries: important sites for chemical and biological reactions. Nature 274 (5672): 678–680.

    Article  CAS  Google Scholar 

  • Myhre, G., D. Shindell, F.-M. Breon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nadajima, A. Robock, G. Stephens, T. Takemura, and H. Zhang. 2013. Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The physical science basis. Contribution Of Working Group I To The Fifth Assessment Report Of The Intergovernmental Panel Of Climate Change, ed. T.F. Stocker, D. Qin, G.K. Plattner, et al., 659–740. Cambridge: Cambridge University Press.

    Google Scholar 

  • Naik, P.K., and D.A. Jay. 2005. Estimation of Columbia River virgin flow: 1879 to 1928. Hydrological Processes 19 (9): 1807–1824. https://doi.org/10.1002/hyp.5636.

    Article  Google Scholar 

  • Neal, V.T. 1972. Physical aspects of the Columbia River and its estuary. In The Columbia River Estuary And Adjacent Ocean Waters, ed. A. Pruter and D. Alverson, 19–39.

    Google Scholar 

  • Neubauer, S.C., R.B. Franklin, and D.J. Berrier. 2013. Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon. Biogeosciences 10 (12): 8171–8183. https://doi.org/10.5194/bg-10-8171-2013.

    Article  CAS  Google Scholar 

  • Nichols, F.H., J.E. Cloern, S.N. Luoma, and D.H. Peterson. 1986. The modification of an estuary. Science 231 (4738): 567–573.

    Article  CAS  Google Scholar 

  • Nisbet, E.G., E.J. Dlugokencky, and P. Bousquet. 2014. Methane on the rise--again. Science 343 (6170): 493–495. https://doi.org/10.1126/science.1247828.

    Article  CAS  Google Scholar 

  • Nisbet, E.G., E.J. Dlugokencky, M.R. Manning, D. Lowry, R.E. Fisher, J.L. France, S.E. Michel, J.B. Miller, J.W.C. White, B. Vaughn, P. Bousquet, J.A. Pyle, N.J. Warwick, M. Cain, R. Brownlow, G. Zazzeri, M. Lanoisellé, A.C. Manning, E. Gloor, D.E.J. Worthy, E.G. Brunke, C. Labuschagne, E.W. Wolff, and A.L. Ganesan. 2016. Rising atmospheric methane: 2007-2014 growth and isotopic shift. Global Biogeochemical Cycles 30 (9): 1356–1370. https://doi.org/10.1002/2016GB005406.

    Article  CAS  Google Scholar 

  • NIST. 2017. National Institute of Standards and Technology Chemistry WebBook, SRD 69.

  • Osudar, R., K.W. Klings, D. Wagner, and I. Bussmann. 2017. Effect of salinity on microbial methane oxidation in freshwater and marine environments. Aquatic Microbial Ecology 80 (2): 181–192. https://doi.org/10.3354/ame01845.

    Article  Google Scholar 

  • Peterson, C.D. 2013. Impacts of predicted global sea-level rise on Oregon beaches and tidelands. In Geology Faculty Publications and Presentations. Portland: Portland State University.

    Google Scholar 

  • Peterson, C. 2014. Late Holocene geomorphology of the Columbia River estuary, Oregon and Washington, USA. Journal Of Geography And Geology 6 (2): 1. https://doi.org/10.5539/jgg.v6n2p1.

    Article  Google Scholar 

  • Pfeiffer-Herbert, A.S., F.G. Prahl, B. Hales, J.A. Lerczak, S.D. Pierce, and M.D. Levine. 2015. High resolution sampling of methane transport in the Columbia River near-field plume: implications for sources and sinks in a river-dominated estuary. Limnology and Oceanography 61 (S1): S204–S220. https://doi.org/10.1002/lno.10221.

    Article  CAS  Google Scholar 

  • Prahl, F.G., and P.G. Coble. 1994. Input and behavior of dissolved organic carbon in the Columbia River estuary. In Changes In Fluxes In Estuaries: Implications From Science To Management, ed. K.R. Dyer and R.J. Orth, 451–457. Midvale: Olsen & Olsen.

    Google Scholar 

  • Prandle, D., and A. Lane. 2015. Sensitivity of estuaries to sea level rise: vulnerability indices. Estuarine, Coastal and Shelf Science 160: 60–68. https://doi.org/10.1016/j.ecss.2015.04.001.

    Article  Google Scholar 

  • Reeburgh, W.S. 2007. Oceanic methane biogeochemistry. Chemical Reviews 107 (2): 486–513. https://doi.org/10.1021/cr050362v.

    Article  CAS  Google Scholar 

  • Roegner, G.C., C. Seaton, and A.M. Baptista. 2010. Climatic and tidal forcing of hydrography and chlorophyll concentrations in the Columbia River estuary. Estuaries and Coasts 34 (2): 281–296. https://doi.org/10.1007/s12237-010-9340-z.

    Article  CAS  Google Scholar 

  • Santos, I.R., B.D. Eyre, and M. Huettel. 2012a. The driving forces of porewater and groundwater flow in permeable coastal sediments: a review. Estuarine, Coastal and Shelf Science 98: 1–15. https://doi.org/10.1016/j.ecss.2011.10.024.

    Article  Google Scholar 

  • Santos, I.R., D.T. Maher, and B.D. Eyre. 2012b. Coupling automated radon and carbon dioxide measurements in coastal waters. Environmental Science and Technology 46 (14): 7685–7691. https://doi.org/10.1021/es301961b.

    Article  CAS  Google Scholar 

  • Santos-Echeandía, J., C. Vale, M. Caetano, P. Pereira, and R. Prego. 2010. Effect of tidal flooding on metal distribution in pore waters of marsh sediments and its transport to water column (Tagus estuary, Portugal). Marine Environmental Research 70 (5): 358–367. https://doi.org/10.1016/j.marenvres.2010.07.003.

    Article  CAS  Google Scholar 

  • Segarra, K.E.A., C. Comerford, J. Slaughter, and S.B. Joye. 2013a. Impact of electron acceptor availability on the anaerobic oxidation of methane in coastal freshwater and brackish wetland sediments. Geochimica et Cosmochimica Acta 115: 15–30. https://doi.org/10.1016/j.gca.2013.03.029.

    Article  CAS  Google Scholar 

  • Segarra, K.E.A., V. Samarkin, E. King, C. Meile, and S.B. Joye. 2013b. Seasonal variations of methane fluxes from an unvegetated tidal freshwater mudflat (Hammersmith Creek, GA). Biogeochemistry 115 (1-3): 349–361. https://doi.org/10.1007/s10533-013-9840-6.

    Article  CAS  Google Scholar 

  • Segers, R. 1998. Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41 (1): 23–51.

    Article  CAS  Google Scholar 

  • Shelley, F., F. Abdullahi, J. Grey, and M. Trimmer. 2015. Microbial methane cycling in the bed of a chalk river: oxidation has the potential to match methanogenesis enhanced by warming. Freshwater Biology 60 (1): 150–160. https://doi.org/10.1111/fwb.12480.

    Article  CAS  Google Scholar 

  • Sherwood, C.R., D.A. Jay, R.B. Harvey, P. Hamilton, and C.A. Simenstad. 1990. Historical changes in the Columbia River estuary. Progress in Oceanography 25 (1-4): 299–352.

    Article  Google Scholar 

  • Sieczko, A.K., K. Demeter, G.A. Singer, M. Tritthart, S. Preiner, M. Mayr, K. Meisterl, and P. Peduzzi. 2016. Aquatic methane dynamics in a human-impacted river-floodplain of the Danube. Limnology and Oceanography 61 (S1): S175–S187. https://doi.org/10.1002/lno.10346.

    Article  CAS  Google Scholar 

  • Stanley, E.H., N.J. Casson, S.T. Christel, J.T. Crawford, L.C. Loken, and S.K. Oliver. 2016. The ecology of methane in streams and rivers: patterns, controls, and global significance. Ecological Monographs 86 (2): 146–171. https://doi.org/10.1890/15-1027.

    Article  Google Scholar 

  • Sullivan, B., F. Prahl, L. Small, and P. Covert. 2001. Seasonality of phytoplankton production in the Columbia River: a natural or anthropogenic pattern? Geochimica et Cosmochimica Acta 65 (7): 1125–1139.

    Article  CAS  Google Scholar 

  • Thomas, D. W., and S. J. Bell. 1983. Changes in Columbia River estuary habitat types over the past century, Columbia River Estuary Data Development Program.

    Google Scholar 

  • Tzortziou, M., P.J. Neale, J.P. Megonigal, C.L. Pow, and M. Butterworth. 2011. Spatial gradients in dissolved carbon due to tidal marsh outwelling into a Chesapeake Bay estuary. Marine Ecology Progress Series 426: 41–56. https://doi.org/10.3354/meps09017.

    Article  CAS  Google Scholar 

  • Upstill-Goddard, R.C., and J. Barnes. 2016. Methane emissions from UK estuaries: re-evaluating the estuarine source of tropospheric methane from Europe. Marine Chemistry 180: 14–23. https://doi.org/10.1016/j.marchem.2016.01.010.

    Article  CAS  Google Scholar 

  • Wanninkhof, R. 2014. Relationship between wind speed and gas exchange over the ocean revisited. Limnology and Oceanography: Methods 12 (6): 351–362. https://doi.org/10.4319/lom.2014.12.351.

    Article  Google Scholar 

  • Weston, N.B., S.C. Neubauer, D.J. Velinsky, and M.A. Vile. 2014. Net ecosystem carbon exchange and the greenhouse gas balance of tidal marshes along an estuarine salinity gradient. Biogeochemistry 120 (1-3): 163–189. https://doi.org/10.1007/s10533-014-9989-7.

    Article  CAS  Google Scholar 

  • Zhang, G., J. Zhang, S. Liu, J. Ren, J. Xu, and F. Zhang. 2008. Methane in the Changjiang (Yangtze River) estuary and its adjacent marine area: riverine input, sediment release and atmospheric fluxes. Biogeochemistry 91 (1): 71–84. https://doi.org/10.1007/sl0533-008-9259-7.

    Article  CAS  Google Scholar 

  • Zhao, S., C. Feng, D. Wang, Y. Liu, and Z. Shen. 2013. Salinity increases the mobility of cd, cu, Mn, and Pb in the sediments of Yangtze estuary: relative role of sediments’ properties and metal speciation. Chemosphere 91 (7): 977–984. https://doi.org/10.1016/j.chemosphere.2013.02.001.

    Article  CAS  Google Scholar 

  • Zheng, Y., L. Hou, M. Liu, Z. Liu, X. Li, X. Lin, G. Yin, J. Gao, C. Yu, R. Wang, and X. Jiang. 2016. Tidal pumping facilitates dissimilatory nitrate reduction in intertidal marshes. Scientific Reports 6 (1): 1–12. https://doi.org/10.1038/srep21338.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna S. Pfeiffer-Herbert.

Additional information

Communicated by Lijun Hou

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pfeiffer-Herbert, A.S., Prahl, F.G., Peterson, T.D. et al. Methane Dynamics Associated with Tidal Processes in the Lower Columbia River. Estuaries and Coasts 42, 1249–1264 (2019). https://doi.org/10.1007/s12237-019-00568-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-019-00568-4

Keywords

Navigation