Skip to main content

Advertisement

Log in

Is Submarine Groundwater Discharge (SGD) Important for the Historical Fish Kills and Harmful Algal Bloom Events of Mobile Bay?

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Large-scale fish and crustacean kills, locally known as Jubilees, and harmful algal blooms (HABs) have been occurring in Mobile Bay (Alabama) for more than a century. In fact, the first record describing a Jubilee event in Mobile Bay during 1867 was the first ever-documented case of mass mortalities of marine animals caused by hypoxia. To evaluate the importance of submarine groundwater discharge (SGD) in the occurrence of Jubilees and HABs in Mobile Bay, a 3-year study was conducted using a multi-method approach. Significant spatial and temporal variations of SGD were revealed in the bay only by applying a combination of geochemical and shallow geophysical techniques. The development of seasonal hypoxia observed in bay waters in areas impacted by Jubilees was the result of anoxic SGD inputs, which magnitude and spatial distribution were controlled by shallow lithological heterogeneities created during the modern development of the bay. Although when compared to the river discharge SGD contributed between 0.2 (wet season) and 5% (dry season) of the total freshwater inputs to Mobile Bay, 80% of the total SGD in the bay occurred in areas ecologically impacted by hypoxia and Jubilees. In these areas, SGD comprised up to 37% of the total water inputs during the dry season, coinciding with the time of the year when Jubilees and HABs occur. In conclusion, while SGD might not be a significant source of fresh water to Mobile Bay or other estuaries worldwide, enhanced SGD caused by site-specific lithological heterogeneities can have a critical role in the development of hypoxia and ecological issues in nearshore waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Advanced Geosciences, Inc. 2014. Instruction manual for EarthImager 2D, version 2.4.0, Resistivity and IP Inversion Software. (Available at http://www.agiusa.com).

  • American Association for Testing and Materials. 1993. ASTM D 2974 standard test methods for moisture, ash, and organic matter of peat and organic soils.

  • American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF). 1999. In Standard methods for the examination of water and wastewater 20th Edition, eds. Clescerl L., Greenberg A. and Eaton A. 2–48. United Book Press, Inc., Baltimore, Maryland. Part 2000.

  • Beebe, D.A., and B.A. Lowery. 2018. Seawater recirculation drives groundwater nutrient loading from a developed estuary shoreline with on-site wastewater treatment systems: Mobile Bay, USA. Environmental Earth Sciences 77 (10): 372.

    Article  Google Scholar 

  • Befus, K.M., M.B. Cardenas, D.R. Tait, and D.V. Erler. 2014. Geoelectrical signals of geologic and hydrologic processes in a fringing reef lagoon setting. Journal of Hydrology 517: 508–520.

    Article  Google Scholar 

  • Bianchi, T.S. 2007. Biogeochemistry of estuaries. New York: Oxford University Press.

    Google Scholar 

  • Bricker, S.B., B. Longstaff, W. Dennison, A. Jones, K. Boicourt, C. Wicks, and J. Woerner. 2008. Effects of nutrient enrichment in the nation's estuaries: A decade of change. Harmful Algae 8 (1): 21–32.

    Article  CAS  Google Scholar 

  • Burnett, W.C., and H. Dulaiova. 2003. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements. Journal of Environmental Radioactivity 69 (1-2): 21–35.

    Article  CAS  Google Scholar 

  • Burnett, W.C., H. Bokuniewicz, M. Huettel, W.S. Moore, and M. Taniguchi. 2003. Groundwater and pore water inputs to the coastal zone. Biogeochemistry 66 (1/2): 3–33.

    Article  CAS  Google Scholar 

  • Burnett, W., P. Aggarwal, A. Aureli, H. Bokuniewicz, J. Cable, M. Charette, E. Kontar, S. Krupa, K. Kulkarni, and A. Loveless. 2006. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Science of the Total Environment 367 (2-3): 498–543.

    Article  CAS  Google Scholar 

  • Burnett, W.C., and H. Dulaiova. 2006. Radon as a tracer of submarine groundwater discharge into a boat basin in Donnalucata, Sicily. Continental Shelf Research 26 (7): 862–873.

    Article  Google Scholar 

  • Burnett, W.C., R. Peterson, W.S. Moore, and J. de Oliveira. 2008. Radon and radium isotopes as tracers of submarine groundwater discharge—results from the Ubatuba, Brazil SGD assessment intercomparison. Estuarine, Coastal and Shelf Science 76 (3): 501–511.

    Article  CAS  Google Scholar 

  • Byrnes, M., J. Berlinghoff and S. Griffee. 2013. Sediment dynamics in Mobile Bay, Alabama: Development of an operational sediment budget. Applied Coastal Research and Engineering Inc. Mobile Bay National Estuary Program Library, Mobile, AL. (Available at http://www.mobilebaynep.com/library).

  • Cable, J.E., W.C. Burnett, J.P. Chanton, and G.L. Weatherly. 1996. Estimating groundwater discharge into the northeastern Gulf of Mexico using radon-222. Earth and Planetary Science Letters 144 (3-4): 591–604.

    Article  CAS  Google Scholar 

  • Cerdà-Domènech, M., V. Rodellas, A. Folch, and J. Garcia-Orellana. 2017. Constraining the temporal variations of Ra isotopes and Rn in the groundwater end-member: Implications for derived SGD estimates. Science of the Total Environment 595: 849–857.

    Article  CAS  Google Scholar 

  • Chandler, R.V., J.D. Moore, and B. Gillett. 1985. Ground-water chemistry and salt-water encroachment, southern Baldwin County, Alabama. Geological Survey of Alabama Bulletin 126: 70.

    Google Scholar 

  • Charette, M.A. 2007. Hydrologic forcing of submarine groundwater discharge: Insight from a seasonal study of radium isotopes in a groundwater-dominated salt marsh estuary. Limnology and Oceanography 52 (1): 230–239.

    Article  CAS  Google Scholar 

  • Chin, J.L., D.L. Woodrow, M. McGann, F.L. Wong, T. Fregoso, and B.E. Jaffe. 2010. Estuarine sedimentation, sediment character, and foraminiferal distribution in central San Francisco Bay, California. U.S. Geological Survey Open-File Report: 2010–1130.

  • Cowan, J. L., J. R. Pennock and W. R. Boynton. 1996. Seasonal and interannual patterns of sediment-water nutrient and oxygen fluxes in Mobile Bay, Alabama (USA): regulating factors and ecological significance. Marine Ecology Progress Series 141: 229–245.

    Article  Google Scholar 

  • Craig, H. 1961. Isotopic variations in meteoric waters. Science 133 (3465): 1702–1703.

    Article  CAS  Google Scholar 

  • Cross, V.A., J.F. Bratton, K.D. Kroeger, J. Crusius, and C.R. Worley. 2013. Continuous resistivity profiling data from Great South Bay, Long Island, New York. U.S. Geological Survey Open-File Report 2011–1040.

  • Crusius, J., D. Koopmans, J.F. Bratton, M.A. Charette, K.D. Kroeger, P.B. Henderson, L. Ryckman, K. Halloran, and J.A. Colman. 2005. Submarine groundwater discharge to a small estuary estimated from radon and salinity measurements and a box model. Biogeosciences 2 (2): 141–157.

    Article  Google Scholar 

  • Danielson, J.J., J.C. Brock, D.M. Howard, D.B. Gesch, J.M. Bonisteel-Cormier, and L.J. Travers. 2013. Topobathymetric model of Mobile Bay, Alabama. US Geological Survey Data Series 769.

  • Dimova, N., W.C. Burnett, and D. Lane-Smith. 2009. Improved automated analysis of radon (222Rn) and thoron (220Rn) in natural waters. Environmental Science & Technology 43 (22): 8599–8603.

    Article  CAS  Google Scholar 

  • Dimova, N.T., P.W. Swarzenski, H. Dulaiova, and C.R. Glenn. 2012. Utilizing multichannel electrical resistivity methods to examine the dynamics of the fresh water–seawater interface in two Hawaiian groundwater systems. Journal of Geophysical Research: Oceans 117 (C2).

  • Dimova, N.T., W.C. Burnett, J.P. Chanton, and J.E. Corbett. 2013. Application of radon-222 to investigate groundwater discharge into small shallow lakes. Journal of Hydrology 486: 112–122.

    Article  CAS  Google Scholar 

  • Doctor, D.H., E.C. Alexander, M. Petrič, J. Kogovšek, J. Urbanc, S. Lojen, and W. Stichler. 2006. Quantification of karst aquifer discharge components during storm events through end-member mixing analysis using natural chemistry and stable isotopes as tracers. Hydrogeology Journal 14 (7): 1171–1191.

    Article  CAS  Google Scholar 

  • Du, J., K. Park, J. Shen, B. Dzwonkowski, X. Yu, and B.I. Yoon. 2018. Role of baroclinic processes on flushing characteristics in a highly stratified estuarine system, Mobile Bay, Alabama. Journal of Geophysical Research: Oceans 123 (7): 4518–4537.

    Google Scholar 

  • Dulaiova, H., R. Peterson, W.C. Burnett, and D. Lane-Smith. 2005. A multi-detector continuous monitor for assessment of 222Rn in the coastal ocean. Journal of Radioanalytical and Nuclear Chemistry 263 (2): 361–365.

    Article  CAS  Google Scholar 

  • Dulaiova, H., W. Burnett, G. Wattayakorn, and P. Sojisuporn. 2006. Are groundwater inputs into river-dominated areas important? The Chao Phraya River—Gulf of Thailand. Limnology and Oceanography 51 (5): 2232–2247.

    Article  CAS  Google Scholar 

  • Dulaiova, H., and W.C. Burnett. 2008. Evaluation of the flushing rates of Apalachicola Bay, Florida via natural geochemical tracers. Marine Chemistry 109 (3-4): 395–408.

    Article  CAS  Google Scholar 

  • Dyer, K.R. 1973. Estuaries: A physical introduction, 140. London: John Wiley & Sons.

    Google Scholar 

  • Dzwonkowski, B., K. Park, H.K. Ha, W.M. Graham, F.J. Hernandez, and S.P. Powers. 2011. Hydrographic variability on a coastal shelf directly influenced by estuarine outflow. Continental Shelf Research 31 (9): 939–950.

    Article  Google Scholar 

  • Ellis, J. 2013. Evaluation of submarine groundwater discharge and groundwater quality using a novel coupled approach: Isotopic tracer techniques and numerical modeling. Master’s thesis, University of Alabama, 67 pp.

  • Garcia-Solsona, E., J. Garcia-Orellana, P. Masqué, and H. Dulaiova. 2008. Uncertainties associated with 223Ra and 224Ra measurements in water via a Delayed Coincidence Counter (RaDeCC). Marine Chemistry 109 (3-4): 198–219.

    Article  CAS  Google Scholar 

  • Garcia-Solsona, E., J. Garcia-Orellana, P. Masqué, V. Rodellas, M. Mejías, B. Ballesteros, and J. Domínguez. 2010. Groundwater and nutrient discharge through karstic coastal springs (Castelló, Spain). Biogeosciences 7 (9): 2625–2638.

    Article  CAS  Google Scholar 

  • Geibert, W., V. Rodellas, A. Annett, P. van Beek, J. Garcia-Orellana, Y.T. Hsieh, and P. Masque. 2013. 226Ra determination via the rate of 222Rn ingrowth with the Radium Delayed Coincidence Counter (RaDeCC). Limnology and Oceanography: Methods 11: 594–603.

    CAS  Google Scholar 

  • Geological Survey of Alabama. 2018. Assessment of groundwater resources in Alabama, 2010–16. Geological Survey of Alabama Bulletin 186: 426.

    Google Scholar 

  • Gillett, B., D. Raymond, J. Moore, and B. Tew. 2000. Hydrogeology and vulnerability to contamination of major aquifers in Alabama: Area 13. Geological Survey of Alabama Circular 199A 68 pp.

  • Greene, D.L., Jr., A.B. Rodriguez, and J.B. Anderson. 2007. Seaward-branching coastal-plain and piedmont incised-valley systems through multiple sea-level cycles: Late Quaternary examples from Mobile Bay and Mississippi Sound, USA. Journal of Sedimentary Research 77 (2): 139–158.

    Article  Google Scholar 

  • Gu, H., W.S. Moore, L. Zhang, J. Du, and J. Zhang. 2012. Using radium isotopes to estimate the residence time and the contribution of submarine groundwater discharge (SGD) in the Changjiang effluent plume, East China Sea. Continental Shelf Research 35: 95–107.

    Article  Google Scholar 

  • Hatje, V., K.K. Attisano, M.F.L. de Souza, B. Mazzilli, J. de Oliveira, T. de Araújo Mora, and W.C. Burnett. 2017. Applications of radon and radium isotopes to determine submarine groundwater discharge and flushing times in Todos os Santos Bay, Brazil. Journal of Environmental Radioactivity 178: 136–146.

    Article  CAS  Google Scholar 

  • Hazen, A. 1893. Some physical properties of sand and gravels. Massachusetts State Board of Health. 24th Annual Report.

  • Henderson, R.D., F.D. Day-Lewis, E. Abarca, C.F. Harvey, H.N. Karam, L. Liu, and J.W. Lane. 2010. Marine electrical resistivity imaging of submarine groundwater discharge: Sensitivity analysis and application in Waquoit Bay, Massachusetts, USA. Hydrogeology Journal 18 (1): 173–185.

    Article  CAS  Google Scholar 

  • Holliday, D., T. Stieglitz, P. Ridd, and W. Read. 2007. Geological controls and tidal forcing of submarine groundwater discharge from a confined aquifer in a coastal sand dune system. Journal of Geophysical Research: Oceans 112 (C4).

  • Hwang, D.-W., G. Kim, Y.-W. Lee, and H.-S. Yang. 2005. Estimating submarine inputs of groundwater and nutrients to a coastal bay using radium isotopes. Marine Chemistry 96 (1-2): 61–71.

    Article  CAS  Google Scholar 

  • Hwang, D.-W., G. Kim, W.-C. Lee, and H.-T. Oh. 2010. The role of submarine groundwater discharge (SGD) in nutrient budgets of Gamak Bay, a shellfish farming bay, in Korea. Journal of Sea Research 64 (3): 224–230.

    Article  CAS  Google Scholar 

  • Johannes, R.E. 1980. The ecological significance of the submarine discharge of groundwater. Marine Ecology Progress Series 3: 365–373.

    Article  Google Scholar 

  • Kim, J., J.-S. Kim, and G. Kim. 2010. Nutrient input from submarine groundwater discharge versus intermittent river-water discharge through an artificial dam in the Yeongsan River estuary, Korea. Ocean Science Journal 45 (3): 179–186.

    Article  CAS  Google Scholar 

  • Krantz, D.E., F.T. Manheim, J.F. Bratton, and D.J. Phelan. 2004. Hydrogeologic setting and ground water flow beneath a section of Indian River Bay, Delaware. Groundwater 42 (7): 1035–1051.

    Article  Google Scholar 

  • Lambe, T.W. 1951. Soil testing for engineers, 406. New York: John Wiley & Sons.

    Google Scholar 

  • Lambert, M.J., and W.C. Burnett. 2003. Submarine groundwater discharge estimates at a Florida coastal site based on continuous radon measurements. Biogeochemistry 66 (1/2): 55–73.

    Article  CAS  Google Scholar 

  • Lee, D.R. 1977. A device for measuring seepage flux in lakes and estuaries. Limnology and Oceanography 22 (1): 140–147.

    Article  CAS  Google Scholar 

  • Liefer, J.D., H.L. MacIntyre, L. Novoveska, W.L. Smith, and C.P. Dorsey. 2009. Temporal and spatial variability in Pseudo-nitzschia spp. in Alabama coastal waters: A hot spot linked to submarine groundwater discharge? Harmful Algae 8 (5): 706–714.

    Article  Google Scholar 

  • Loesch, H. 1960. Sporadic mass shoreward migrations of demersal fish and crustaceans in Mobile Bay, Alabama. Ecology 41 (2): 292–298.

    Article  Google Scholar 

  • Null, K.A., D.R. Corbett, D.J. DeMaster, J.M. Burkholder, C.J. Thomas, and R.E. Reed. 2011. Porewater advection of ammonium into the Neuse river estuary, North Carolina, USA. Estuarine, Coastal and Shelf Science 95 (2-3): 314–325.

    Article  CAS  Google Scholar 

  • Macintyre, H.L., A.L. Stutes, W.L. Smith, C.P. Dorsey, A. Abraham, and R.W. Dickey. 2011. Environmental correlates of community composition and toxicity during a bloom of Pseudo-nitzschia spp. in the northern Gulf of Mexico. Journal of Plankton Research 33 (2): 273–295.

    Article  Google Scholar 

  • May, E.B. 1973. Extensive oxygen depletion in Mobile Bay, Alabama. Limnology and Oceanography 18 (3): 353–366.

    Article  CAS  Google Scholar 

  • Michael, H.A., K.C. Scott, M. Koneshloo, X. Yu, M.R. Khan, and K. Li. 2016. Geologic influence on groundwater salinity drives large seawater circulation through the continental shelf. Geophysical Research Letters 43 (20): 10,782–10,791.

    Article  Google Scholar 

  • Montiel, D., N. Dimova, B. Andreo, J. Prieto, J. García-Orellana, and V. Rodellas. 2018. Assessing submarine groundwater discharge (SGD) and nitrate fluxes in highly heterogeneous coastal karst aquifers: Challenges and solutions. Journal of Hydrology 557: 222–242.

    Article  CAS  Google Scholar 

  • Moore, W.S. 1976. Sampling 228Ra in the deep ocean. Deep Sea Research and Oceanographic Abstracts 23 (7): 647–651.

    Article  CAS  Google Scholar 

  • Moore, W.S., and R. Arnold. 1996. Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter. Journal of Geophysical Research: Oceans 101 (C1): 1321–1329.

    Article  CAS  Google Scholar 

  • Moore, W.S. 1996. Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature 380 (6575): 612–614.

    Article  CAS  Google Scholar 

  • Moore, W.S. 1999. The subterranean estuary: A reaction zone of ground water and sea water. Marine Chemistry 65 (1-2): 111–125.

    Article  CAS  Google Scholar 

  • Moore, W.S. 2000. Determining coastal mixing rates using radium isotopes. Continental Shelf Research 20 (15): 1993–2007.

    Article  Google Scholar 

  • Moore, W.S. 2003. Sources and fluxes of submarine groundwater discharge delineated by radium isotopes. Biogeochemistry 66 (1/2): 75–93.

    Article  CAS  Google Scholar 

  • Moore, W.S. 2008. Fifteen years experience in measuring 224Ra and 223Ra by delayed-coincidence counting. Marine Chemistry 109 (3-4): 188–197.

    Article  CAS  Google Scholar 

  • Moore, W.S., and J. Krest. 2004. Distribution of 223Ra and 224Ra in the plumes of the Mississippi and Atchafalaya Rivers and the Gulf of Mexico. Marine Chemistry 864: 105–119.

    Article  CAS  Google Scholar 

  • Moore, W.S. 2010. The effect of submarine groundwater discharge on the ocean. Annual Review of Marine Science 2 (1): 59–88.

    Article  Google Scholar 

  • Noble, M.A., W.W. Schroeder, W.J. Wiseman, H.F. Ryan, and G. Gelfenbaum. 1996. Subtidal circulation patterns in a shallow, highly stratified estuary: Mobile Bay, Alabama. Journal of Geophysical Research: Oceans 101 (C11): 25689–25703.

    Article  Google Scholar 

  • Null, K.A., N.T. Dimova, K.L. Knee, B.K. Esser, P.W. Swarzenski, M.J. Singleton, M. Stacey, and A. Paytan. 2012. Submarine groundwater discharge-derived nutrient loads to San Francisco Bay: Implications to future ecosystem changes. Estuaries and Coasts 35 (5): 1299–1315.

    Article  CAS  Google Scholar 

  • Park, K., C.K. Kim, and W.W. Schroeder. 2007. Temporal variability in summertime bottom hypoxia in shallow areas of Mobile Bay, Alabama. Estuaries and Coasts 30 (1): 54–65.

    Article  CAS  Google Scholar 

  • Parsons, M.L., and Q. Dortch. 2002. Sedimentological evidence of an increase in Pseudo-nitzschia (Bacillariophyceae) abundance in response to coastal eutrophication. Limnology and Oceanography 47 (2): 551–558.

    Article  Google Scholar 

  • Peterson, R.N., W.C. Burnett, M. Taniguchi, J. Chen, I.R. Santos, and T. Ishitobi. 2008. Radon and radium isotope assessment of submarine groundwater discharge in the Yellow River delta, China. Journal of Geophysical Research: Oceans 113.

  • Reed, P.C. 1971. Geologic map of Baldwin County, Alabama. Geological Survey of Alabama Special Map 94: 55.

    Google Scholar 

  • Ridgway, J., and G. Shimmield. 2002. Estuaries as repositories of historical contamination and their impact on shelf seas. Estuarine, Coastal and Shelf Science 55 (6): 903–928.

    Article  CAS  Google Scholar 

  • Rodellas, V., J. Garcia-Orellana, G. Trezzi, P. Masqué, T.C. Stieglitz, H. Bokuniewicz, J.K. Cochran, and E. Berdalet. 2017. Using the radium quartet to quantify submarine groundwater discharge and porewater exchange. Geochimica et Cosmochimica Acta 196: 58–73.

    Article  CAS  Google Scholar 

  • Rodriguez, A. B., D. L. Greene, J. B. Anderson and A. R. Simms. 2008. Response of Mobile Bay and eastern Mississippi Sound, Alabama, to changes in sediment accommodation and accumulation. In Response of upper Gulf Coast estuaries to Holocene climate change and sea-level rise, eds. J.B. Anderson and A.B. Rodriguez 13–29. Geological Society of America.

  • Rodriguez, A.B., A.R. Simms, and J.B. Anderson. 2010. Bay-head deltas across the northern Gulf of Mexico back step in response to the 8.2 ka cooling event. Quaternary Science Reviews 29 (27-28): 3983–3993.

    Article  Google Scholar 

  • Roman, C.T., N. Jaworski, F.T. Short, S. Findlay, and R.S. Warren. 2000. Estuaries of the northeastern United States: Habitat and land use signatures. Estuaries 23 (6): 743–764.

    Article  CAS  Google Scholar 

  • Russoniello, C.J., C. Fernandez, J.F. Bratton, J.F. Banaszak, D.E. Krantz, A.S. Andres, L.F. Konikow, and H.A. Michael. 2013. Geologic effects on groundwater salinity and discharge into an estuary. Journal of Hydrology 498: 1–12.

    Article  CAS  Google Scholar 

  • Santos, I.R.S., W.C. Burnett, J. Chanton, B. Mwashote, I.G. Suryaputra, and T. Dittmar. 2008. Nutrient biogeochemistry in a Gulf of Mexico subterranean estuary and groundwater-derived fluxes to the coastal ocean. Limnology and Oceanography 53 (2): 705–718.

    Article  CAS  Google Scholar 

  • Santos, I.R., W.C. Burnett, J. Chanton, N. Dimova, and R.N. Peterson. 2009. Land or ocean?: Assessing the driving forces of submarine groundwater discharge at a coastal site in the Gulf of Mexico. Journal of Geophysical Research: Oceans 114 (C4).

  • Santos, I.R., B.D. Eyre, and M. Huettel. 2012. The driving forces of porewater and groundwater flow in permeable coastal sediments: A review. Estuarine, Coastal and Shelf Science 98: 1–15.

    Article  Google Scholar 

  • Sawyer, A.H., O. Lazareva, K.D. Kroeger, K. Crespo, C.S. Chan, T. Stieglitz, and H.A. Michael. 2014. Stratigraphic controls on fluid and solute fluxes across the sediment–water interface of an estuary. Limnology and Oceanography 59 (3): 997–1010.

    Article  CAS  Google Scholar 

  • Schroeder, W.W. 1978. Riverine influence on estuaries: A case study. In Estuarine interactions, 347–364.

    Chapter  Google Scholar 

  • Schroeder, W.W., S.P. Dinnel, and W.J. Wiseman. 1990. Salinity stratification in a river-dominated estuary. Estuaries 13 (2): 145–154.

    Article  Google Scholar 

  • Schwartz, M. 2003. Significant groundwater input to a coastal plain estuary: Assessment from excess radon. Estuarine, Coastal and Shelf Science 56 (1): 31–42.

    Article  Google Scholar 

  • Stalker, J.C., R.M. Price, and P.K. Swart. 2009. Determining spatial and temporal inputs of freshwater, including submarine groundwater discharge, to a subtropical estuary using geochemical tracers, Biscayne Bay, South Florida. Estuaries and Coasts 32 (4): 694–708.

    Article  CAS  Google Scholar 

  • Stieglitz, T.C., P.G. Cook, and W.C. Burnett. 2010. Inferring coastal processes from regional-scale mapping of 222Radon and salinity: Examples from the Great Barrier Reef, Australia. Journal of Environmental Radioactivity 101 (7): 544–552.

    Article  CAS  Google Scholar 

  • Stumpf, R.P., G. Gelfenbaum, and J.R. Pennock. 1993. Wind and tidal forcing of a buoyant plume, Mobile Bay, Alabama. Continental Shelf Research 13 (11): 1281–1301.

    Article  Google Scholar 

  • Su, N., W.C. Burnett, H.L. MacIntyre, J.D. Liefer, R.N. Peterson, and R. Viso. 2014. Natural radon and radium isotopes for assessing groundwater discharge into Little Lagoon, AL: Implications for harmful algal blooms. Estuaries and Coasts 37 (4): 893–910.

    Article  CAS  Google Scholar 

  • Sun, Y., and T. Torgersen. 1998. The effects of water content and Mn-fiber surface conditions on 224Ra measurement by 220Rn emanation. Marine Chemistry 62 (3-4): 299–306.

    Article  CAS  Google Scholar 

  • Tait, D.R., I.R. Santos, D.V. Erler, K.M. Befus, M.B. Cardenas, and B.D. Eyre. 2013. Estimating submarine groundwater discharge in a South Pacific coral reef lagoon using different radioisotope and geophysical approaches. Marine Chemistry 156: 49–60.

    Article  CAS  Google Scholar 

  • Taniguchi, M., W.C. Burnett, J.E. Cable, and J.V. Turner. 2002. Investigation of submarine groundwater discharge. Hydrological Processes 16 (11): 2115–2129.

    Article  Google Scholar 

  • Taniguchi, M., T. Ishitobi, and K.I. Saeki. 2005. Evaluation of time-space distributions of submarine ground water discharge. Groundwater 43 (3): 336–342.

    Article  CAS  Google Scholar 

  • Tamborski, J.J., A.D. Rogers, H.J. Bokuniewicz, J.K. Cochran, and C.R. Young. 2015. Identification and quantification of diffuse fresh submarine groundwater discharge via airborne thermal infrared remote sensing. Remote Sensing of Environment 171: 202–217.

    Article  Google Scholar 

  • Tovar-Sánchez, A., G. Basterretxea, V. Rodellas, D. Sánchez-Quiles, J. García-Orellana, P. Masqué, A. Jordi, J.M. López, and E. Garcia-Solsona. 2014. Contribution of groundwater discharge to the coastal dissolved nutrients and trace metal concentrations in Majorca Island: Karstic vs detrital systems. Environmental Science & Technology 48 (20): 11819–11827.

    Article  CAS  Google Scholar 

  • Turner, R., W. Schroeder, and W.J. Wiseman. 1987. The role of stratification in the deoxygenation of Mobile Bay and adjacent shelf bottom waters. Estuaries 10 (1): 13–19.

    Article  CAS  Google Scholar 

  • Uddameri, V., S. Singaraju, and E.A. Hernandez. 2014. Temporal variability of freshwater and pore water recirculation components of submarine groundwater discharges at Baffin Bay, Texas. Environmental Earth Sciences 71 (6): 2517–2533.

    Article  Google Scholar 

  • Walter, G.R., and R.E. Kidd. 1979. Ground-water management techniques for the control of salt-water encroachment in Gulf Coast aquifers, a summary report, 84. Geological Survey of Alabama Open-file Report.

  • Wang, X., and F. Andutta. 2013. Sediment transport dynamics in ports, estuaries and other coastal environments. In Sediment transport, ed. A. Manning, 3–35. InTech.

  • Ward, G.M., P.M. Harris, and A.K. Ward. 2005. Gulf Coast rivers of the southeastern United States. Rivers of North America: 125–178.

  • Webb, B.M., and C. Marr. 2016. Spatial variability of hydrodynamic timescales in a broad and shallow estuary: Mobile Bay, Alabama. Journal of Coastal Research 32: 1374–1388.

    Article  Google Scholar 

  • Wentworth, C.K. 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology 30 (5): 377–392.

    Article  Google Scholar 

  • Wilson, A.M., M. Huettel, and S. Klein. 2008. Grain size and depositional environment as predictors of permeability in coastal marine sands. Estuarine, Coastal and Shelf Science 80 (1): 193–199.

    Article  Google Scholar 

  • Wolfe, D.A., and B. Kjerfve. 1986. Estuarine variability: An overview. In Estuarine variability, ed. D.A. Wolfe, 3–17. Academic Press.

  • Xu, B., W. Burnett, N. Dimova, S. Diao, T. Mi, X. Jiang, and Z. Yu. 2013. Hydrodynamics in the Yellow River Estuary via radium isotopes: Ecological perspectives. Continental Shelf Research 66: 19–28.

    Article  Google Scholar 

  • Young, C., J. Tamborski, and H. Bokuniewicz. 2015. Embayment scale assessment of submarine groundwater discharge nutrient loading and associated land use. Estuarine, Coastal and Shelf Science 158: 20–30.

    Article  CAS  Google Scholar 

  • Young, M.B., M.E. Gonneea, D.A. Fong, W.S. Moore, J. Herrera-Silveira, and A. Paytan. 2008. Characterizing sources of groundwater to a tropical coastal lagoon in a karstic area using radium isotopes and water chemistry. Marine Chemistry 109 (3-4): 377–394.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We also want to thank the Mobile District US Army Corps of Engineers, Nathan Coburn, Adam Forkner, Richard Allen, and Steve Dykstra for their extensive help in the field. We are also very grateful for the massive help from the Weeks Bay National Estuarine Research Reserve by providing accommodation and technical support during all field campaigns.

Funding

This research was partially funded by the National Science Foundation (NSF OIA-1632825), the 2016 ExxonMobil Summer Fund, the 2015 Gulf Coast Association of Geological Societies Student Research Grant, the University of Alabama Graduate School Research and Travel Support Fund, the UA Department of Geological Sciences W. Gary Hooks Geological Sciences Advisory Board Fund, and the A.S. Johnson Travel Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Montiel.

Additional information

Communicated by Isaac Santos

Electronic Supplementary Material

ESM 1

(DOCX 4317 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montiel, D., Lamore, A., Stewart, J. et al. Is Submarine Groundwater Discharge (SGD) Important for the Historical Fish Kills and Harmful Algal Bloom Events of Mobile Bay?. Estuaries and Coasts 42, 470–493 (2019). https://doi.org/10.1007/s12237-018-0485-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-018-0485-5

Keywords

Navigation