Skip to main content

Advertisement

Log in

Phytoplankton Spatial Variability in the River-Dominated Estuary, Apalachicola Bay, Florida

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

In shallow estuaries with strong river influence, the short residence time and pronounced gradients generate an environment for plankton that differs substantially in its dynamics from that of the open ocean, and the question arises “How is phytoplankton biomass affected?” This study assesses the small-scale spatial and temporal distribution of phytoplankton in Apalachicola Bay, a shallow bar-built estuary in the Florida Panhandle. Phytoplankton peaks were characterized to gain insights into the processes affecting spatial heterogeneity in biomass. Chlorophyll a (Chl a) distribution at 50-m spatial resolution was mapped using a flow-through sensor array, Dataflow©, operated from a boat that sampled four transects across the bay every 2 weeks for 16 months. Chl a peaks exceeding background concentrations had an average width of 1.3 ± 0.7 km delineated by an average gradient of 3.0 ± 6.0 μg Chl a L−1 km−1. Magnitude of E-W wind, velocity of N-S wind, tidal stage, and temperature affected peak characteristics. Phytoplankton contained in the peaks contributed 7.7 ± 2.7% of the total integrated biomass observed along the transects during the study period. The river plume front was frequently a location of elevated Chl a, which shifted in response to river discharge. The results demonstrate that despite the shallow water column, river flushing, and strong wind and tidal mixing, distinct patchiness develops that should be taken into consideration in ecological studies and when assessing productivity of such ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abraham, E.R. 1998. The generation of plankton patchiness by turbulent stirring. Nature 391 (6667): 577–580.

    Article  CAS  Google Scholar 

  • Anttila, S., T. Kairesalo, and P. Pellikka. 2008. A feasible method to assess inaccuracy caused by patchiness in water quality monitoring. Environmental Monitoring and Assessment 142 (1-3): 11–22.

    Article  CAS  Google Scholar 

  • Artigas, M.L., C. Llebot, O.N. Ross, N.Z. Neszi, V. Rodellas, J. Garcia-Orellana, P. Masqué, J. Piera, M. Estrada, and E. Berdalet. 2014. Understanding the spatio-temporal variability of phytoplankton biomass distribution in a microtidal Mediterranean estuary. Deep Sea Research Part II: Topical Studies in Oceanography 101: 180–192.

    Article  Google Scholar 

  • Aurin, D.A., and H.M. Dierssen. 2012. Advantages and limitations of ocean color remote sensing in CDOM-dominated, mineral-rich coastal and estuarine waters. Remote Sensing of Environment 125: 181–197.

    Article  Google Scholar 

  • Bianchi, T.S. 2006. Biogeochemistry of estuaries. Oxford University Press.

  • Blondeau-Patissier, D., J.F. Gower, A.G. Dekker, S.R. Phinn, and V.E. Brando. 2014. A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Progress in Oceanography 123: 123–144.

    Article  Google Scholar 

  • Blondeau-Patissier, D., V. Brando, K. Oubelkheir, A. Dekker, L. Clementson, and P. Daniel. 2009. Bio-optical variability of the absorption and scattering properties of the Queensland inshore and reef waters, Australia. Journal of Geophysical Research: Oceans 114 (C5).

  • Camp, E.V., W.E. Pine Iii, K. Havens, A.S. Kane, C.J. Walters, T. Irani, A.B. Lindsey, and J.J.G. Morris. 2015. Collapse of a historic oyster fishery: diagnosing causes and identifying paths toward increased resilience. Ecology and Society 20 (3).

  • Chanton, J., and F.G. Lewis. 2002. Examination of coupling between primary and secondary production in a river-dominated estuary: Apalachicola Bay, Florida, USA. Limnology and Oceanography 47 (3): 683–697.

    Article  Google Scholar 

  • Cloern, J.E. 1991. Tidal stirring and phytoplankton bloom dynamics in an estuary. Journal of Marine Research 49 (1): 203–221.

    Article  Google Scholar 

  • Cloern, J.E. 1996. Phytoplankton bloom dynamics in coastal ecosystems: a review with some general lessons from sustained investigation of San Francisco Bay, California. Reviews of Geophysics 34 (2): 127–168.

    Article  CAS  Google Scholar 

  • Cloern, J.E. 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210: 223–253.

    Article  CAS  Google Scholar 

  • Cloern, J.E., and R. Dufford. 2005. Phytoplankton community ecology: principles applied in San Francisco Bay. Marine Ecology Progress Series 285: 11–28.

    Article  CAS  Google Scholar 

  • de Kerckhove, D.T., E.A. Blukacz-Richards, B.J. Shuter, L. Cruz-Font, and P.A. Abrams. 2015. Wind on lakes brings predator and prey together in the pelagic zone. Canadian Journal of Fisheries and Aquatic Sciences 72 (11): 1652–1662.

    Article  Google Scholar 

  • Denman, K., and A. Gargett. 1983. Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean. Oceanography 28.

  • Dulaiova, H., and W.C. Burnett. 2008. Evaluation of the flushing rates of Apalachicola Bay, Florida via natural geochemical tracers. Marine Chemistry 109 (3-4): 395–408.

    Article  CAS  Google Scholar 

  • Dustan, P., and J.L. Pinckney. 1989. Tidally induced estuarine phytoplankton patchiness. Limnology and Oceanography 34 (2): 410–419.

    Article  Google Scholar 

  • Edmiston, H.L. 2008. A river meets the bay. The Apalachicola Estuarine System. Apalachicola National Estuarine Research Reserve, Florida Department of Environmental Protection, Tallahassee, Florida: 1–188.

  • Edmiston, H.L., S.A. Fahrny, M.S. Lamb, L.K. Levi, J.M. Wanat, J.S. Avant, K. Wren, and N.C. Selly. 2008. Tropical storm and hurricane impacts on a Gulf Coast estuary: Apalachicola Bay, Florida. Journal of Coastal Research 10055: 38–49.

    Article  Google Scholar 

  • Folt, C.L., and C.W. Burns. 1999. Biological drivers of zooplankton patchiness. Trends in Ecology & Evolution 14 (8): 300–305.

    Article  CAS  Google Scholar 

  • Franks, P.J. 1992. Phytoplankton blooms at fronts: Patterns, scales, and physical forcing mechanisms. Reviews in Aquatic Sciences 6: 121–137.

    Google Scholar 

  • Fulmer, J.M. 1997. Nutrient enrichment and nutrient input to Apalachicola Bay, Florida. Masters thesis, Florida State University, Tallahassee, Florida.

  • Gabrielson, J., and R. Lukatelich. 1985. Wind-related resuspension of sediments in the Peel-Harvey estuarine system. Estuarine, Coastal and Shelf Science 20 (2): 135–145.

    Article  CAS  Google Scholar 

  • Geyer, W. 1997. Influence of wind on dynamics and flushing of shallow estuaries. Estuarine, Coastal and Shelf Science 44 (6): 713–722.

    Article  Google Scholar 

  • Gliwicz, Z.M., and P. Maszczyk. 2015. Heterogeneity in prey distribution allows for higher food intake in planktivorous fish, particularly when hot. Oecologia 180: 383–399.

    Article  Google Scholar 

  • Hamner, W.M., and I.R. Hauri. 1981. Effects of island mass: water flow and plankton pattern around a reef in the Great Barrier Reef lagoon, Australia. Limnology and Oceanography 26 (6): 1084–1102.

    Article  Google Scholar 

  • Harding, L.W., and E.S. Perry. 1997. Long-term increase of phytoplankton biomass in Chesapeake Bay, 1950-1994. Marine Ecology Progress Series 157: 39–52.

    Article  Google Scholar 

  • Harris, G.P. 1986. Phytoplankton ecology: structure, function and fluctuation. London: Chapman and Hall.

    Book  Google Scholar 

  • Haury, L., J. McGowan, and P. Wiebe. 1978. Patterns and processes in the time-space scales of plankton distributions. In Spatial pattern in plankton communities, ed. J.H. Steele, 277–327. New York, NY: Plenum Press.

    Chapter  Google Scholar 

  • Hestir, E.L., V.E. Brando, M. Bresciani, C. Giardino, E. Matta, P. Villa, and A.G. Dekker. 2015. Measuring freshwater aquatic ecosystems: the need for a hyperspectral global mapping satellite mission. Remote Sensing of Environment 167: 181–195.

    Article  Google Scholar 

  • Huang, W. 2010. Hydrodynamic modeling and ecohydrological analysis of river inflow effects on Apalachicola Bay, Florida, USA. Estuarine, Coastal and Shelf Science 86 (3): 526–534.

    Article  Google Scholar 

  • Huang, W., S. Chen, X. Yang, and E. Johnson. 2014. Assessment of chlorophyll-a variations in high- and low-flow seasons in Apalachicola Bay by MODIS 250-m remote sensing. Environmental Monitoring and Assessment 186 (12): 8329–8342.

    Article  CAS  Google Scholar 

  • Huang, W., W.K. Jones, and T.S. Wu. 2002a. Modelling wind effects on subtidal salinity in Apalachicola Bay, Florida. Estuarine, Coastal and Shelf Science 55 (1): 33–46.

    Article  CAS  Google Scholar 

  • Huang, W., H. Sun, S. Nnaji, and W.K. Jones. 2002b. Tidal hydrodynamics in a multiple-inlet estuary: Apalachicola Bay, Florida. Journal of Coastal Research 18: 674–684.

    Google Scholar 

  • Jassby, A.D., B.E. Cole, and J.E. Cloern. 1997. The design of sampling transects for characterizing water quality in estuaries. Estuarine, Coastal and Shelf Science 45 (3): 285–302.

    Article  CAS  Google Scholar 

  • Jones, W., and G. Rodriguez. 1995. Apalachicola Bay freshwater needs assessment program, geophysical data collection program. Northwest Florida Water Management District. Water Resources Special Reports 95:95.

  • Joshi, I.D., E.J. D'Sa, C.L. Osburn, T.S. Bianchi, D.S. Ko, D. Oviedo-Vargas, A.R. Arellano, and N.D. Ward. 2017. Assessing chromophoric dissolved organic matter (CDOM) distribution, stocks, and fluxes in Apalachicola Bay using combined field, VIIRS ocean color, and model observations. Remote Sensing of Environment 191: 359–372.

    Article  Google Scholar 

  • Kimmel, D.G., B.D. McGlaughon, J. Leonard, H.W. Paerl, J.C. Taylor, E.K. Cira, and M.S. Wetz. 2015. Mesozooplankton abundance in relation to the chlorophyll maximum in the Neuse River Estuary, North Carolina, USA: implications for trophic dynamics. Estuarine, Coastal and Shelf Science 157: 59–68.

    Article  CAS  Google Scholar 

  • Koseff, J.R., J.K. Holen, S.G. Monismith, and J.E. Cloern. 1993. Coupled effects of vertical mixing and benthic grazing on phytoplankton populations in shallow, turbid estuaries. Journal of Marine Research 51 (4): 843–868.

    Article  Google Scholar 

  • Largier, J.L. 1992. Tidal intrusion fronts. Estuaries and Coasts 15 (1): 26–39.

    Article  Google Scholar 

  • Largier, J.L. 1993. Estuarine fronts: how important are they? Estuaries 16 (1): 11.

    Article  Google Scholar 

  • Leitman, S., W. Pine III, and G. Kiker. 2016. Management options during the 2011–2012 drought on the Apalachicola River: a systems dynamic model evaluation. Environmental Management: 1–15.

  • Liu, X., and N.M. Levine. 2016. Enhancement of phytoplankton chlorophyll by submesoscale frontal dynamics in the North Pacific Subtropical Gyre. Geophysical Research Letters.

  • Livingston, R.J. 2010. Nutrients in the Apalachicola River-Bay System. In Report to the Florida Department of Environmental Protection.

  • Livingston, R.J., F.G. Lewis, G.C. Woodsum, X.F. Niu, B. Galperin, W. Huang, J.D. Christensen, M.E. Monaco, T.A. Battista, C.J. Klein, R.L. Howell, and G.L. Ray. 2000. Modelling oyster population response to variation in freshwater input. Estuarine, Coastal and Shelf Science 50 (5): 655–672.

    Article  Google Scholar 

  • Livingston, R.J., X. Niu, F.G. Lewis, and G.C. Woodsum. 1997. Freshwater input to a gulf estuary: long-term control of trophic organization. Ecological Applications 7 (1): 277–299.

    Article  Google Scholar 

  • Llebot, C., F.J. Rueda, J. Solé, M.L. Artigas, and M. Estrada. 2014. Hydrodynamic states in a wind-driven microtidal estuary (Alfacs Bay). Journal of Sea Research 85: 263–276.

    Article  Google Scholar 

  • Lucas, L.V., J.R. Koseff, J.E. Cloern, S.G. Monismith, and J.K. Thompson. 1999a. Processes governing phytoplankton blooms in estuaries. I: the local production-loss balance. Marine Ecology Progress Series 187: 1–15.

    Article  Google Scholar 

  • Lucas, L.V., J.R. Koseff, S.G. Monismith, J.E. Cloern, and J.K. Thompson. 1999b. Processes governing phytoplankton blooms in estuaries. II: the role of horizontal transport. Marine Ecology Progress Series 187: 17–30.

    Article  Google Scholar 

  • Mackas, D.L., K.L. Denman, and M.R. Abbott. 1985. Plankton patchiness: biology in the physical vernacular. Bulletin of Marine Science 37: 652–674.

    Google Scholar 

  • Madden, C.J., and J.W. Day. 1992. An instrument system for high-speed mapping of chlorophyll a and physico-chemical variables in surface waters. Estuaries 15 (3): 421–427.

    Article  CAS  Google Scholar 

  • Malthus, T.J., J. Anstee, H. Botha, E. Hestir, and A. Dekker. 2015. Sentinel 3 for Inland Water Quality Monitoring-Advanced in Earth Observation Based Technologies to Assist Algal Management. In Sentinel-3 for Science Workshop, 45.

  • Martin, A. 2005. The kaleidoscope ocean. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 363 (1837): 2873–2890.

    Article  Google Scholar 

  • Martin, A.P. 2003. Phytoplankton patchiness: the role of lateral stirring and mixing. Progress in Oceanography 57 (2): 125–174.

    Article  Google Scholar 

  • Martin, A.P., M. Lévy, S. van Gennip, S. Pardo, M. Srokosz, J. Allen, S.C. Painter, and R. Pidcock. 2015. An observational assessment of the influence of mesoscale and submesoscale heterogeneity on ocean biogeochemical reactions. Global Biogeochemical Cycles 29 (9): 1421–1438.

    Article  CAS  Google Scholar 

  • McLeod, P., A.P. Martin, and K.J. Richards. 2002. Minimum length scale for growth-limited oceanic plankton distributions. Ecological Modelling 158 (1-2): 111–120.

    Article  Google Scholar 

  • McPhee-Shaw, E.E., K.J. Nielsen, J.L. Largier, and B.A. Menge. 2011. Nearshore chlorophyll-a events and wave-driven transport. Geophysical Research Letters 38 (2).

    Article  Google Scholar 

  • Monbet, Y. 1992. Control of phytoplankton biomass in estuaries: a comparative analysis of microtidal and macrotidal estuaries. Estuaries 15 (4): 563–571.

    Article  CAS  Google Scholar 

  • Morey, S.L., and D.S. Dukhovskoy. 2012. Analysis methods for characterizing salinity variability from multivariate time series applied to the Apalachicola Bay estuary. Journal of Atmospheric and Oceanic Technology 29 (4): 613–628.

    Article  Google Scholar 

  • Morse, R.E., J. Shen, J.L. Blanco-Garcia, W.S. Hunley, S. Fentress, M. Wiggins, and M.R. Mulholland. 2011. Environmental and physical controls on the formation and transport of blooms of the dinoflagellate Cochlodinium polykrikoides Margalef in the lower Chesapeake Bay and its tributaries. Estuaries and Coasts 34 (5): 1006–1025.

    Article  Google Scholar 

  • Mortazavi, B., R.L. Iverson, W. Huang, F.G. Lewis, and J.M. Caffrey. 2000a. Nitrogen budget of Apalachicola Bay, a bar-built estuary in the northeastern Gulf of Mexico. Marine Ecology Progress Series 195: 1–14.

    Article  CAS  Google Scholar 

  • Mortazavi, B., R.L. Iverson, W.M. Landing, and W. Huang. 2000b. Phosphorus budget of Apalachicola Bay: a river-dominated estuary in the northeastern Gulf of Mexico. Marine Ecology Progress Series 198: 33–42.

    Article  CAS  Google Scholar 

  • Mortazavi, B., R.L. Iverson, W.M. Landing, F.G. Lewis, and W. Huang. 2000c. Control of phytoplankton production and biomass in a river-dominated estuary: Apalachicola Bay, Florida, USA. Marine Ecology Progress Series 198: 19–31.

    Article  Google Scholar 

  • Mortazavi, B., A.A. Riggs, J.M. Caffrey, H. Genet, and S.W. Phipps. 2012. The contribution of benthic nutrient regeneration to primary production in a shallow eutrophic estuary, Weeks Bay, Alabama. Estuaries and Coasts 35 (3): 862–877.

    Article  CAS  Google Scholar 

  • Mouw, C.B., S. Greb, D. Aurin, P.M. DiGiacomo, Z. Lee, M. Twardowski, C. Binding, C. Hu, R. Ma, and T. Moore. 2015. Aquatic color radiometry remote sensing of coastal and inland waters: challenges and recommendations for future satellite missions. Remote Sensing of Environment 160: 15–30.

    Article  Google Scholar 

  • Murrell, M.C., J.D. Hagy, E.M. Lores, and R.M. Greene. 2007. Phytoplankton production and nutrient distributions in a subtropical estuary: importance of freshwater flow. Estuaries and Coasts 30 (3): 390–402.

    Article  Google Scholar 

  • Myers, V.B. 1977. Nutrient limitation of phytoplankton productivity in north Florida coastal systems: technical considerations, spatial patterns, and wind mixing effects. Dissertation: Florida State University Tallahassee, FL.

    Google Scholar 

  • Oczkowski, A.J., F.G. Lewis, S.W. Nixon, H.L. Edmiston, R.S. Robinson, and J.P. Chanton. 2011. Fresh water inflow and oyster productivity in Apalachicola Bay, FL (USA). Estuaries and Coasts 34 (5): 993–1005.

    Article  CAS  Google Scholar 

  • Paerl, H.W., L.M. Valdes-Weaver, A.R. Joyner, and V. Winkelmann. 2007. Phytoplankton indicators of ecological change in the Eutrophying Pamlico Sound system, North Carolina. Ecological Applications 17 (sp5): S88–S101.

    Article  Google Scholar 

  • Petersen, J.E., W.M. Kemp, R. Bartleson, W.R. Boynton, C.C. Chen, J.C. Cornwell, R.H. Gardner, D.C. Hinkle, E.D. Houde, and T.C. Malone. 2003. Multiscale experiments in coastal ecology: improving realism and advancing theory. Bioscience 53 (12): 1181–1197.

    Article  Google Scholar 

  • Petersen, J.E., W.M. Kemp, V.S. Kennedy, W.C. Dennison, and P. Kangas. 2009. Tools for design and analysis of experiments. In Enclosed experimental ecosystems and scale: tools for understanding and managing coastal ecosystems, ed. J.E. Petersen, V.S. Kennedy, W.C. Dennison, and W.M. Kemp, 133–170. New York, NY: Springer US.

    Chapter  Google Scholar 

  • Pinckney, J.L., H.W. Paerl, M.B. Harrington, and K.E. Howe. 1998. Annual cycles of phytoplankton community-structure and bloom dynamics in the Neuse River Estuary, North Carolina. Marine Biology 131 (2): 371–381.

    Article  Google Scholar 

  • Pine, W.E., III, C.J. Walters, E.V. Camp, R. Bouchillon, R. Ahrens, L. Sturmer, and M.E. Berrigan. 2015. The curious case of eastern oyster Crassostrea virginica stock status in Apalachicola Bay, Florida. Ecology and Society 20 (3): 46.

  • Putland, J.N., and R.L. Iverson. 2007a. Ecology of Acartia tonsa in Apalachicola Bay, Florida., and implications of river water diversion. Marine Ecology Progress Series 340: 173–187.

    Article  Google Scholar 

  • Putland, J.N., and R.L. Iverson. 2007b. Microzooplankton: major herbivores in an estuarine planktonic food web. Marine Ecology Progress Series 345: 63–73.

    Article  CAS  Google Scholar 

  • Putland, J.N., B. Mortazavi, R.L. Iverson, and S.W. Wise. 2013. Phytoplankton biomass and composition in a river-dominated estuary during two summers of contrasting river discharge. Estuaries and Coasts 37: 664–679.

    Article  Google Scholar 

  • Roman, M., X. Zhang, C. McGilliard, and W. Boicourt. 2005. Seasonal and annual variability in the spatial patterns of plankton biomass in Chesapeake Bay. Limnology and Oceanography 50 (2): 480–492.

    Article  Google Scholar 

  • Seuront, L. 2005. Hydrodynamic and tidal controls of small-scale phytoplankton patchiness. Marine Ecology Progress Series 302: 93–101.

    Article  Google Scholar 

  • Seuront, L., F. Schmitt, Y. Lagadeuc, D. Schertzer, and S. Lovejoy. 1999. Universal multifractal analysis as a tool to characterize multiscale intermittent patterns: example of phytoplankton distribution in turbulent coastal waters. Journal of Plankton Research 21 (5): 877–922.

    Article  Google Scholar 

  • Spall, S., and K. Richards. 2000. A numerical model of mesoscale frontal instabilities and plankton dynamics—I. Model formulation and initial experiments. Deep Sea Research Part I: Oceanographic Research Papers 47 (7): 1261–1301.

    Article  Google Scholar 

  • Statham, P.J. 2012. Nutrients in estuaries—an overview and the potential impacts of climate change. Science of the Total Environment 434: 213–227.

    Article  CAS  Google Scholar 

  • Steele, J.H. 1978. Spatial pattern in plankton communities. New York, NY: Plenum Press.

    Book  Google Scholar 

  • Twichell, D., B. Andrews, L. Edmiston, and B. Stevenson. 2007. Geophysical mapping of oyster habitats in a shallow estuary: Apalachicola Bay, Florida. U.S. Geological Survey Open-File Report 2006-1381: 1-13. 

  • Twichell, D., L. Edmiston, B. Andrews, W. Stevenson, J. Donoghue, R. Poore, and L. Osterman. 2010. Geologic controls on the recent evolution of oyster reefs in Apalachicola Bay and St. George Sound, Florida. Estuarine, Coastal and Shelf Science 88 (3): 385–394.

    Article  Google Scholar 

  • Tzella, A., and P.H. Haynes. 2006. Small-scale spatial structure in plankton distributions. Biogeosciences Discussions 3 (6): 1791–1808.

    Article  Google Scholar 

  • Uncles, R.J., and J.A. Stephens. 2011. The effects of wind, runoff and tides on salinity in a strongly tidal sub-estuary. Estuaries and Coasts 34 (4): 758–774.

    Article  CAS  Google Scholar 

  • van Gennip, S., A.P. Martin, M.A. Srokosz, J.T. Allen, R. Pidcock, S.C. Painter, and M.C. Stinchcombe. 2016. Plankton patchiness investigated using simultaneous nitrate and chlorophyll observations. Journal of Geophysical Research: Oceans 121 (6): 4149–4156.

    Google Scholar 

  • Viveros, P.A.B. 2014. Phytoplankton biomass and composition in Apalachicola Bay, a subtropical river dominated estuary in Florida. Dissertation: University of Florida, Florida.

  • Wang, H., C.M. Hladik, W. Huang, K. Milla, L. Edmiston, M.A. Harwell, and J.F. Schalles. 2010. Detecting the spatial and temporal variability of chlorophyll-aconcentration and total suspended solids in Apalachicola Bay, Florida using MODIS imagery. International Journal of Remote Sensing 31 (2): 439–453.

    Article  Google Scholar 

  • Ward, B.A., S. Dutkiewicz, and M.J. Follows. 2013. Modelling spatial and temporal patterns in size-structured marine plankton communities: top-down and bottom-up controls. Journal of Plankton Research 36: 31–47.

    Article  Google Scholar 

  • Welschmeyer, N.A. 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnology and Oceanography 39 (8): 1985–1992.

    Article  CAS  Google Scholar 

  • Wengrove, M.E., D.L. Foster, L.H. Kalnejais, V. Percuoco, and T.C. Lippmann. 2015. Field and laboratory observations of bed stress and associated nutrient release in a tidal estuary. Estuarine, Coastal and Shelf Science 161: 11–24.

    Article  CAS  Google Scholar 

  • Wetz, M.S., K.C. Hayes, A.J. Lewitus, J.L. Wolny, and D.L. White. 2006. Variability in phytoplankton pigment biomass and taxonomic composition over tidal cycles in a salt marsh estuary. Marine Ecology Progress Series 320: 109–120.

    Article  CAS  Google Scholar 

  • Wetz, M.S., E.A. Hutchinson, R.S. Lunetta, H.W. Paerl, and J. Christopher Taylor. 2011. Severe droughts reduce estuarine primary productivity with cascading effects on higher trophic levels. Limnology and Oceanography 56 (2): 627–638.

    Article  CAS  Google Scholar 

  • Wilber, D.H. 1992. Associations between freshwater inflows and oyster productivity in Apalachicola Bay, Florida. Estuarine, Coastal and Shelf Science 35 (2): 179–190.

    Article  Google Scholar 

  • Zhang, X., M. Roman, D. Kimmel, C. McGilliard, and W. Boicourt. 2006. Spatial variability in plankton biomass and hydrographic variables along an axial transect in Chesapeake Bay. Journal of Geophysical Research 111 (C5).

Download references

Acknowledgments

We thank the Apalachicola National Estuary Research Reserve (NERR) staff for providing boat time and assistance to conduct transect sampling, Alex Davis (FSU) and Emily Hutchinson (FSU) for helping with field sampling and lab analysis, Chris Madden (SFWMD), Dave Oliff (FSU) and Alan Michaels (FSU) for technical support of the project, as well as Bill Parker (FSU) for helpful feedback about the peak analysis method. We thank the associate editor and two anonymous reviewers for their insightful comments and suggestions that helped to improve this manuscript.

Funding

This study was supported by the National Ocean and Atmospheric Administration NERR Graduate Research Fellowship (grant number NA11NOS4200083) to NLG and by the Florida State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Huettel.

Additional information

Communicated by Charles Simenstad

Electronic Supplementary Material

ESM 1

(JPEG 112 kb)

High Resolution Image

(EPS 257 kb)

ESM 2

(JPEG 163 kb)

High Resolution Image

(EPS 4.08 mb)

ESM 3

(JPEG 57 kb)

High Resolution Image

(EPS 553 kb)

ESM 4

(JPEG 222 kb)

High Resolution Image

(EPS 9808 kb)

ESM 5

(JPEG 238 kb)

High Resolution Image

(EPS 15304 kb)

ESM 6

(JPEG 175 kb)

High Resolution Image

(EPS 4785 kb)

ESM 7

(JPEG 198 kb)

High Resolution Image

(EPS 1513 kb)

ESM 8

(JPEG 190 kb)

High Resolution Image

(EPS 1331 kb)

ESM 9

(JPEG 147 kb)

High Resolution Image

(EPS 267 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geyer, N.L., Huettel, M. & Wetz, M.S. Phytoplankton Spatial Variability in the River-Dominated Estuary, Apalachicola Bay, Florida. Estuaries and Coasts 41, 2024–2038 (2018). https://doi.org/10.1007/s12237-018-0402-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-018-0402-y

Keywords

Navigation