Skip to main content

Advertisement

Log in

Variable Nitrification Rates Across Environmental Gradients in Turbid, Nutrient-Rich Estuary Waters of San Francisco Bay

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Understanding rates of nitrogen cycling in estuaries is crucial for understanding their productivity and resilience to eutrophication. Nitrification, the microbial oxidation of ammonia to nitrite and nitrate, links reduced and oxidized forms of inorganic nitrogen and is therefore an important step of the nitrogen cycle. However, rates of nitrification in estuary waters are poorly characterized. In fall and winter of 2011–2012, we measured nitrification rates throughout the water column of all major regions of San Francisco Bay, a large, turbid, nutrient-rich estuary on the west coast of North America. Nitrification rates were highest in regions furthest from the ocean, including many samples with rates higher than those typically measured in the sea. In bottom waters, nitrification rates were commonly at least twice the magnitude of surface rates. Strong positive correlations were found between nitrification and both suspended particulate matter and ammonium concentration. Our results are consistent with previous studies documenting high nitrification rates in brackish, turbid regions of other estuaries, many of which also showed correlations with suspended sediment and ammonium concentrations. Overall, nitrification in estuary waters appears to play a significant role in the estuarine nitrogen cycle, though the maximum rate of nitrification can differ dramatically between estuaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abril, G., S.A. Riou, H. Etcheber, M. Frankignoulle, R. de Wit, and J.J. Middelburg. 2000. Transient, tidal time-scale, nitrogen transformations in an estuarine turbidity maximum—fluid mud system (the Gironde, south-west France). Estuarine, Coastal and Shelf Science 50: 703–715. doi:10.1006/ecss.1999.0598.

    Article  CAS  Google Scholar 

  • Alpine, A.E., and J.E. Cloern. 1988. Phytoplankton growth rates in a light-limited environment, San Francisco Bay. Marine Ecology Progress Series 44: 167–173. doi:10.3354/meps044167.

    Article  Google Scholar 

  • Alpine, A.E., and J.E. Cloern. 1992. Trophic interactions and direct physical effects control phytoplankton biomass and production in an estuary. Limnology and Oceanography 37: 946–955. doi:10.4319/lo.1992.37.5.0946.

    Article  Google Scholar 

  • Andersson, M.G.I., N. Brion, and J.J. Middelburg. 2006. Comparison of nitrifier activity versus growth in the Scheldt estuary—a turbid, tidal estuary in northern Europe. Aquatic Microbial Ecology 42: 149–158. doi:10.3354/ame042149.

    Article  Google Scholar 

  • Baer, S.E., T.L. Connelly, R.E. Sipler, P.L. Yager, and D.A. Bronk. 2014. Effect of temperature on rates of ammonium uptake and nitrification in the western coastal Arctic during winter, spring, and summer. Global Biogeochemical Cycles 28: 1455–1466. doi:10.1002/2013GB004765.

    Article  CAS  Google Scholar 

  • Beman, J.M., B.N. Popp, and C.A. Francis. 2008. Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. The ISME Journal 2: 429–441. doi:10.1038/ismej.2007.118.

    Article  CAS  Google Scholar 

  • Benner, R., and S. Opsahl. 2001. Molecular indicators of the sources and transformations of dissolved organic matter in the Mississippi river plume. Organic Geochemistry 32: 597–611. doi:10.1016/S0146-6380(00)00197-2.

    Article  CAS  Google Scholar 

  • Berounsky, V.M., and S.W. Nixon. 1985. Eutrophication and the rate of net nitrification in a coastal marine ecosystem. Estuarine, Coastal and Shelf Science 20: 773–781. doi:10.1016/0272-7714(85)90032-0.

    Article  CAS  Google Scholar 

  • Berounsky, V.M., and S.W. Nixon. 1990. Temperature and the annual cycle of nitrification in waters of Narragansett Bay. Limnology and Oceanography 35: 1610–1617. doi:10.4319/lo.1990.35.7.1610.

    Article  CAS  Google Scholar 

  • Berounsky, V.M., and S.W. Nixon. 1993. Rates of nitrification along an estuarine gradient in Narragansett Bay. Estuaries 16: 718–730. doi:10.2307/1352430.

    Article  CAS  Google Scholar 

  • Bianchi, M., P. Bonin, and Feliatra. 1994. Bacterial nitrification and denitrification rates in the Rhône River plume (northwestern Mediterranean Sea). Marine Ecology Progress Series 103: 197–202. doi:10.3354/meps103197.

    Article  CAS  Google Scholar 

  • Bianchi, M., Feliatra, and D. Lefevre. 1999. Regulation of nitrification in the land-ocean contact area of the Rhône River plume. Aquatic Microbial Ecology 18: 301–312. doi:10.3354/ame018301.

    Article  Google Scholar 

  • Borcard, D., F. Gillet, and P. Legendre. 2011. Numerical ecology with R. New York: Springer.

    Book  Google Scholar 

  • Bouskill, N.J., D. Eveillard, D. Chien, A. Jayakumar, and B.B. Ward. 2012. Environmental factors determining ammonia-oxidizing organism distribution and diversity in marine environments. Environmental Microbiology 14: 714–729. doi:10.1111/j.1462-2920.2011.02623.x.

    Article  CAS  Google Scholar 

  • Bower, C.E., and T. Holm-Hansen. 1980. A salicylate-hypochlorite method for determining ammonia in seawater. Canadian Journal of Fisheries and Aquatic Sciences 37: 794–798. doi:10.1139/f80-106.

    Article  CAS  Google Scholar 

  • Brand, A., J.R. Lacy, K. Hsu, D. Hoover, S. Gladding, and M.T. Stacey. 2010. Wind-enhanced resuspension in the shallow waters of South San Francisco Bay: mechanisms and potential implications for cohesive sediment transport. Journal of Geophysical Research 115, C11024. doi:10.1029/2010JC006172.

    Article  Google Scholar 

  • Bricker, S.B., B. Longstaff, W. Dennison, A. Jones, K. Boicourt, C. Wicks, and J. Woerner. 2008. Effects of nutrient enrichment in the nation’s estuaries: a decade of change. Harmful Algae 8: 21–32. doi:10.1016/j.hal.2008.08.028.

    Article  CAS  Google Scholar 

  • Brion, N., G. Billen, L. Guezennec, and A. Ficht. 2000. Distribution of nitrifying activity in the Seine River (France) from Paris to the estuary. Estuaries 23: 669–682. doi:10.2307/1352893.

    Article  CAS  Google Scholar 

  • Brion, N., M.G.I. Andersson, M. Elskens, C. Diaconu, W. Baeyens, F. Dehairs, and J.J. Middelburg. 2008. Nitrogen cycling, retention and export in a eutrophic temperate macrotidal estuary. Marine Ecology Progress Series 357: 87–99. doi:10.3354/meps07249.

    Article  CAS  Google Scholar 

  • Bristow, L.A., N. Sarode, J. Cartee, A. Caro-Quintero, B. Thamdrup, and F.J. Stewart. 2015. Biogeochemical and metagenomic analysis of nitrite accumulation in the Gulf of Mexico hypoxic zone. Limnology and Oceanography 60: 1733–1750. doi:10.1002/lno.10130.

    Article  CAS  Google Scholar 

  • Bronk, D.A., L. Killberg-Thoreson, R.E. Sipler, M.R. Mulholland, Q.N. Roberts, P.W. Bernhardt, M. Garrett, J.M. O’Neil, and C.A. Heil. 2014. Nitrogen uptake and regeneration (ammonium regeneration, nitrification and photoproduction) in waters of the West Florida Shelf prone to blooms of Karenia brevis. Harmful Algae 38: 50–62. doi:10.1016/j.hal.2014.04.007.

    Article  CAS  Google Scholar 

  • Caffrey, J.M. 1995. Spatial and seasonal patterns in sediment nitrogen remineralization and ammonium concentrations in San Francisco Bay, California. Estuaries 18: 219–233. doi:10.2307/1352632.

    Article  CAS  Google Scholar 

  • Caffrey, J.M., J.E. Cloern, and C. Grenz. 1998. Changes in production and respiration during a spring phytoplankton bloom in San Francisco Bay, California, USA: implications for net ecosystem metabolism. Marine Ecology Progress Series 172: 1–12. doi:10.3354/meps172001.

  • Capone, D.G., S.G. Horrigan, S.E. Dunham, and J. Fowler. 1990. Direct determination of nitrification in marine waters by using the short-lived radioisotope of nitrogen, 13N. Applied and Environmental Microbiology 56: 1182–1184.

    CAS  Google Scholar 

  • Carini, S.A., M.J. McCarthy, and W.S. Gardner. 2010. An isotope dilution method to measure nitrification rates in the northern Gulf of Mexico and other eutrophic waters. Continental Shelf Research 30: 1795–1801. doi:10.1016/j.csr.2010.08.001.

    Article  Google Scholar 

  • Cébron, A., T. Berthe, and J. Garnier. 2003. Nitrification and nitrifying bacteria in the lower Seine River and estuary (France). Applied and Environmental Microbiology 69: 7091–7100. doi:10.1128/AEM.69.12.7091-7100.2003.

    Article  CAS  Google Scholar 

  • Cheng, R.T., and J.W. Gartner. 1985. Harmonic analysis of tides and tidal currents in south San Francisco Bay, California. Estuarine, Coastal and Shelf Science 21: 57–74. doi:10.1016/0272-7714(85)90006-X.

    Article  Google Scholar 

  • Cifuentes, L.A., M.L. Fogel, J.R. Pennock, and J.H. Sharp. 1989. Biogeochemical factors that influence the stable nitrogen isotope ratio of dissolved ammonium in the Delaware Estuary. Geochimica et Cosmochimica Acta 53: 2713–2721. doi:10.1016/0016-7037(89)90142-7.

    Article  CAS  Google Scholar 

  • Cloern, J.E. 1987. Turbidity as a control on phytoplankton biomass and productivity in estuaries. Continental Shelf Research 7: 1367–1381. doi:10.1016/0278-4343(87)90042-2.

    Article  Google Scholar 

  • Cloern, J.E., and A.D. Jassby. 2012. Drivers of change in estuarine-coastal ecosystems: discoveries from four decades of study in San Francisco Bay. Reviews of Geophysics 50, RG4001. doi:10.1029/2012RG000397.

    Article  Google Scholar 

  • Cloern, J.E., K.A. Hieb, T. Jacobson, B. Sansó, E. DiLorenzo, M.T. Stacey, J.L. Largier, et al. 2010. Biological communities in San Francisco Bay track large-scale climate forcing over the North Pacific. Geophysical Research Letters 37, L21602. doi:10.1029/2010GL044774.

    Article  Google Scholar 

  • Cole, B.E., and J.E. Cloern. 1984. Significance of biomass and light availability to phytoplankton productivity in San Francisco Bay. Marine Ecology Progress Series 17: 15–24. doi:10.3354/meps017015.

    Article  Google Scholar 

  • Conomos, T.J., R.E. Smith, and J.W. Gartner. 1985. Environmental setting of San Francisco Bay. Hydrobiologia 129: 1–12. doi:10.1007/BF00048684.

    Article  Google Scholar 

  • Dai, M., L. Wang, X. Guo, W. Zhai, Q. Li, B. He, and S.J. Kao. 2008. Nitrification and inorganic nitrogen distribution in a large perturbed river/estuarine system: the Pearl River Estuary, China. Biogeosciences 5: 1227–1244. doi:10.5194/bg-5-1227-2008.

    Article  CAS  Google Scholar 

  • Damashek, J., J.M. Smith, A.C. Mosier, and C.A. Francis. 2015. Benthic ammonia oxidizers differ in community structure and biogeochemical potential across a riverine delta. Frontiers in Microbiology 5: 743. doi:10.3389/fmicb.2014.00743.

    Article  Google Scholar 

  • de Bie, M.J.M., M. Starink, H.T.S. Boschker, J.J. Peene, and H.J. Laanbroek. 2002. Nitrification in the Schelde estuary: methodological aspects and factors influencing its activity. FEMS Microbiology Ecology 42: 99–107. doi:10.1111/j.1574-6941.2002.tb00999.x.

    Article  Google Scholar 

  • de Wilde, H.P.J., and M.J.M. de Bie. 2000. Nitrous oxide in the Schelde estuary: production by nitrification and emission to the atmosphere. Marine Chemistry 69: 203–216. doi:10.1016/S0304-4203(99)00106-1.

    Article  Google Scholar 

  • Devlin, M.J., J. Barry, D.K. Mills, R.J. Gowen, J. Foden, D. Sivyer, N. Greenwood, D. Pearce, and P. Tett. 2009. Estimating the diffuse attenuation coefficient from optically active constituents in UK marine waters. Estuarine, Coastal and Shelf Science 82: 73–83. doi:10.1016/j.ecss.2008.12.015.

    Article  CAS  Google Scholar 

  • Dore, J.E., and D.M. Karl. 1996. Nitrification in the euphotic zone as a source for nitrite, nitrate, and nitrous oxide at Station ALOHA. Limnology and Oceanography 41: 1619–1628. doi:10.4319/lo.1996.41.8.1619.

    Article  CAS  Google Scholar 

  • Enoksson, V. 1986. Nitrification rates in the Baltic Sea: comparison of three isotope techniques. Applied and Environmental Microbiology 51: 244–250.

    CAS  Google Scholar 

  • Feliatra, F., and M. Bianchi. 1993. Rates of nitrification and carbon uptake in the Rhône river plume (northwestern Mediterranean Sea). Microbial Ecology 26: 21–28. doi:10.1007/BF00166026.

    Article  CAS  Google Scholar 

  • Fitzsimons, M.F., G.E. Millward, D.M. Revitt, and M.D. Dawit. 2006. Desorption kinetics of ammonium and methylamines from estuarine sediments: consequences for the cycling of nitrogen. Marine Chemistry 101: 12–26. doi:10.1016/j.marchem.2005.12.006.

    Article  CAS  Google Scholar 

  • Francis, C.A., K.J. Roberts, J.M. Beman, A.E. Santoro, and B.B. Oakley. 2005. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences 102: 14683–14688. doi:10.1073/pnas.0506625102.

    Article  CAS  Google Scholar 

  • Fulweiler, R.W., H.E. Emery, E.M. Heiss, and V.M. Berounsky. 2011. Assessing the role of pH in determining water column nitrification rates in a coastal system. Estuaries and Coasts 34: 1095–1102. doi:10.1007/s12237-011-9432-4.

    Article  CAS  Google Scholar 

  • Füssel, J., P. Lam, G. Lavik, M.M. Jensen, M. Holtappels, M. Günter, and M.M.M. Kuypers. 2012. Nitrite oxidation in the Namibian oxygen minimum zone. The ISME Journal 6: 1200–1209. doi:10.1038/ismej.2011.178.

    Article  CAS  Google Scholar 

  • Ganju, N.K., and D.H. Schoellhamer. 2008. Lateral variability of the estuarine turbidity maximum in a tidal strait. In Sediment and ecohydraulics: INTERCOH 2005, eds. T. Kusuda, H. Yamanishi, J. Spearman, and J. Z. Gailani, 9:339–355. Elsevier. doi:10.1016/S1568-2692(08)80026-5.

  • Gazeau, F., J.P. Gattuso, J.J. Middelburg, N. Brion, L.S. Schiettecatie, M. Frankignoulle, and A.V. Borges. 2005. Planktonic and whole system metabolism in a nutrient-rich estuary (the Scheldt estuary). Estuaries 28: 868–883. doi:10.1007/BF02696016.

    Article  CAS  Google Scholar 

  • Ginestet, P., J.M. Audic, V. Urbain, and J.C. Block. 1998. Estimation of nitrifying bacterial activities by measuring oxygen uptake in the presence of the metabolic inhibitors allylthiourea and azide. Applied and Environmental Microbiology 64: 2266–2268.

    CAS  Google Scholar 

  • Glibert, P.M. 2010. Long-term changes in nutrient loading and stoichiometry and their relationships with changes in the food web and dominant pelagic fish species in the San Francisco estuary, California. Reviews in Fisheries Science 18: 211–232. doi:10.1080/10641262.2010.492059.

    Article  Google Scholar 

  • Goosen, N.K., J. Kromkamp, J. Peene, P. van Rijswijk, and P. van Breugel. 1999. Bacterial and phytoplankton production in the maximum turbidity zone of three European estuaries: the Elbe, Westerschelde and Gironde. Journal of Marine Systems 22: 151–171. doi:10.1016/S0924-7963(99)00038-X.

    Article  Google Scholar 

  • Goring, C.A.I. 1962. Control of nitrification by 2-chloro-6-(trichloro-methyl) pyridine. Soil Science 93: 211–218. doi:10.1097/00010694-196203000-00010.

    Article  CAS  Google Scholar 

  • Grenz, C., J.E. Cloern, S.W. Hager, and B.E. Cole. 2000. Dynamics of nutrient cycling and related benthic nutrient and oxygen fluxes during a spring phytoplankton bloom in South San Francisco Bay (USA). Marine Ecology Progress Series 197: 67–80. doi:10.3354/meps197067.

    Article  CAS  Google Scholar 

  • Grundle, D.S., and S.K. Juniper. 2011. Nitrification from the lower euphotic zone to the sub-oxic waters of a highly productive British Columbia fjord. Marine Chemistry 126: 173–181. doi:10.1016/j.marchem.2011.06.001.

    Article  CAS  Google Scholar 

  • Hall, G.H. 1984. Measurement of nitrification rates in lake sediments: comparison of the nitrification inhibitors nitrapyrin and allylthiourea. Microbial Ecology 10: 25–36. doi:10.1007/BF02011592.

    Article  CAS  Google Scholar 

  • Hallam, S.J., T.J. Mincer, C. Schleper, C.M. Preston, K. Roberts, P.M. Richardson, and E.F. DeLong. 2006. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biology 4, e95. doi:10.1371/journal.pbio.0040095.st003.

    Article  Google Scholar 

  • Hammond, D.E., C. Fuller, D. Harmon, B. Hartman, M. Korosec, L.G. Miller, R. Rea, S. Warren, W. Berelson, and S.W. Hager. 1985. Benthic fluxes in San Francisco Bay. Hydrobiologia 129: 69–90. doi:10.1007/BF00048688.

    Article  CAS  Google Scholar 

  • Hatzenpichler, R., E.V. Lebedeva, E. Spieck, K. Stoecker, A. Richter, H. Daims, and M. Wagner. 2008. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proceedings of the National Academy of Sciences 105: 2134–2139. doi:10.1073/pnas.0708857105.

    Article  CAS  Google Scholar 

  • Helder, W., and R.T.P. De Vries. 1983. Estuarine nitrite maxima and nitrifying bacteria (Ems-Dollard estuary). Netherlands Journal of Sea Research 17: 1–18.

    Article  CAS  Google Scholar 

  • Hietanen, S., H. Jäntti, C. Buizert, K. Jürgens, M. Labrenz, M. Voss, and J. Kuparinen. 2012. Hypoxia and nitrogen processing in the Baltic Sea water column. Limnology and Oceanography 57: 325–337. doi:10.4319/lo.2012.57.1.0325.

    CAS  Google Scholar 

  • Hollibaugh, J.T., and P.S. Wong. 1999. Microbial processes in the San Francisco Bay estuarine turbidity maximum. Estuaries 22: 848–862. doi:10.2307/1353066.

    Article  CAS  Google Scholar 

  • Hollibaugh, J.T., S.M. Gifford, M.A. Moran, M.J. Ross, S. Sharma, and B.B. Tolar. 2014. Seasonal variation in the metratranscriptomes of a Thaumarchaeota population from SE USA coastal waters. The ISME Journal 8: 685–698. doi:10.1038/ismej.2013.171.

    Article  CAS  Google Scholar 

  • Horak, R.E.A., W. Qin, A.J. Schauer, E.V. Armbrust, A.E. Ingalls, J.W. Moffett, D.A. Stahl, and A.H. Devol. 2013. Ammonia oxidation kinetics and temperature sensitivity of a natural marine community dominated by Archaea. The ISME Journal 7: 2023–2033. doi:10.1038/ismej.2013.75.

    Article  CAS  Google Scholar 

  • Horrigan, S.G., and A.L. Springer. 1990. Oceanic and estuarine ammonium oxidation: effects of light. Limnology and Oceanography 35: 479–482. doi:10.4319/lo.1990.35.2.0479.

    Article  CAS  Google Scholar 

  • Horrigan, S.G., J.P. Montoya, J.L. Nevins, J.J. McCarthy, H. Ducklow, R. Goericke, and T. Malone. 1990. Nitrogenous nutrient transformations in the spring and fall in the Chesapeake Bay. Estuarine, Coastal and Shelf Science 30: 369–391. doi:10.1016/0272-7714(90)90004-B.

    Article  CAS  Google Scholar 

  • Hsiao, S.S.Y., T.C. Hsu, J.W. Liu, X. Xie, Y. Zhang, J. Lin, H. Wang, et al. 2014. Nitrification and its oxygen consumption along the turbid Chang Jiang River plume. Biogeosciences 11: 2083–2098. doi:10.5194/bg-11-2083-2014.

    Article  CAS  Google Scholar 

  • Iriarte, A., I. de Madariaga, F. Diez-Garagarza, M. Revilla, and E. Orive. 1996. Primary plankton production, respiration and nitrification in a shallow temperate estuary during summer. Journal of Experimental Marine Biology and Ecology 208: 127–151. doi:10.1016/S0022-0981(96)02672-X.

    Article  Google Scholar 

  • Iriarte, A., A. de la Sota, and E. Orive. 1998. Seasonal variation of nitrification along a salinity gradient in an urban estuary. Hydrobiologia 362: 115–126. doi:10.1023/A:1003130516899.

    Article  Google Scholar 

  • Jacquot, J.E., R.E.A. Horak, S.A. Amin, A.H. Devol, A.E. Ingalls, E.V. Armbrust, D.A. Stahl, and J.W. Moffett. 2014. Assessment of the potential for copper limitation of ammonia oxidation by Archaea in a dynamic estuary. Marine Chemistry 162: 37–49. doi:10.1016/j.marchem.2014.02.002.

    Article  CAS  Google Scholar 

  • Jäntti, H., S. Jokinen, and S. Hietanen. 2013. Effect of nitrification inhibitors on the Baltic Sea ammonia-oxidizing community and precision of the denitrifier method. Aquatic Microbial Ecology 70: 181–186. doi:10.3354/ame01653.

    Article  Google Scholar 

  • Jassby, A. 2008. Phytoplankton in the upper San Francisco Estuary: recent biomass trends, their causes and their trophic significance. San Francisco Estuary and Watershed Science 6: Article 2.

  • Jay, D.A., and J.D. Musiak. 1994. Particle trapping in estuarine tidal flows. Journal of Geophysical Research 99: 20445–20461. doi:10.1029/94JC00971.

    Article  Google Scholar 

  • Jørgensen, B.B., M. Bang, and T.H. Blackburn. 1990. Anaerobic mineralization in marine sediments from the Baltic Sea-North Sea transition. Marine Ecology Progress Series 59: 39–54. doi:10.3354/meps059039.

    Article  Google Scholar 

  • Junk, G., and H.J. Svec. 1958. The absolute abundance of the nitrogen isotopes in the atmosphere and compressed gas from various sources. Geochimica et Cosmochimica Acta 14: 234–243. doi:10.1016/0016-7037(58)90082-6.

    Article  CAS  Google Scholar 

  • Kahle, D., and H. Wickham. 2013. ggmap: spatial visualization with ggplot2. The R Journal 5: 144–161.

    Google Scholar 

  • Kimmerer, W. 2004. Open water processes of the San Francisco Estuary: from physical forcing to biological responses. San Francisco Estuary and Watershed Science 2: Article 1.

  • Kitidis, V., B. Laverock, L.C. McNeill, A. Beesley, D. Cummings, K. Tait, M.A. Osborn, and S. Widdicombe. 2011. Impact of ocean acidification on benthic and water column ammonia oxidation. Geophysical Research Letters 38, L21603. doi:10.1029/2011GL049095.

    Article  CAS  Google Scholar 

  • Lam, P., G. Lavik, M.M. Jensen, J. van de Vossenberg, M. Schmid, D. Woebken, D. Gutiérrez, R. Amann, M.S.M. Jetten, and M.M.M. Kuypers. 2009. Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proceedings of the National Academy of Sciences 106: 4752–4757. doi:10.1073/pnas.0812444106.

    Article  CAS  Google Scholar 

  • Lee, D.Y., D.P. Keller, B.C. Crump, and R.R. Hood. 2012. Community metabolism and energy transfer in the Chesapeake Bay estuarine turbidity maximum. Marine Ecology Progress Series 449: 65–82. doi:10.3354/meps09543.

    Article  Google Scholar 

  • Lees, H. 1952. The biochemistry of nitrifying organisms 1. The ammonia-oxidizing systems of Nitrosomonas. Biochemical Journal 52: 134–139.

    Article  CAS  Google Scholar 

  • Legendre, L., and M. Gosselin. 1996. Estimation of N or C uptake rates by phytoplankton using 15N or 13C: revisiting the usual computation formulae. Journal of Plankton Research 19: 263–271. doi:10.1093/plankt/19.2.263.

    Article  Google Scholar 

  • Legendre, P., and L. Legendre. 2012. Numerical ecology, 3rd ed. San Francisco: Elsevier.

    Google Scholar 

  • Lehman, P.W., G. Boyer, C. Hall, S. Waller, and K. Gehrts. 2005. Distribution and toxicity of a new colonial Microcystis aeruginosa bloom in the San Francisco Bay Estuary, California. Hydrobiologia 541: 87–99. doi:10.1007/s10750-004-4670-0.

    Article  CAS  Google Scholar 

  • Lipschultz, F., S.C. Wofsy, and L.E. Fox. 1986. Nitrogen metabolism of the eutrophic Delaware River ecosystem. Limnology and Oceanography 31: 701–716. doi:10.4319/lo.1986.31.4.0701.

    Article  CAS  Google Scholar 

  • Mariotti, A., C. Lancelot, and G. Billen. 1984. Natural isotopic composition of nitrogen as a tracer of origin for suspended organic matter in the Scheldt estuary. Geochimica et Cosmochimica Acta 48: 549–555. doi:10.1016/0016-7037(84)90283-7.

    Article  CAS  Google Scholar 

  • McCarthy, J.J., W. Kaplan, and J.L. Nevins. 1984. Chesapeake Bay nutrient and plankton dynamics. 2. Sources and sinks of nitrite. Limnology and Oceanography 29: 84–98. doi:10.4319/lo.1984.29.1.0084.

    Article  CAS  Google Scholar 

  • McIlvin, M.R., and K.L. Casciotti. 2011. Technical updates to the bacterial method for nitrate isotopic analyses. Analytical Chemistry 83: 1850–1856. doi:10.1021/ac1028984.

    Article  CAS  Google Scholar 

  • McKee, L.J., N.K. Ganju, and D.H. Schoellhamer. 2006. Estimates of suspended sediment entering San Francisco Bay from the Sacramento and San Joaquin Delta, San Francisco Bay, California. Journal of Hydrology 323: 335–352. doi:10.1016/j.jhydrol.2005.09.006.

    Article  Google Scholar 

  • Merbt, S.N., D.A. Stahl, E.O. Casamayor, E. Martí, G.W. Nicol, and J.I. Prosser. 2012. Differential photoinhibition of bacterial and archaeal ammonia oxidation. FEMS Microbiology Letters 327: 41–46. doi:10.1111/j.1574-6968.2011.02457.x.

    Article  CAS  Google Scholar 

  • Middelburg, J.J., and J. Nieuwenhuize. 2001. Nitrogen isotope tracing of dissolved inorganic nitrogen behaviour in tidal estuaries. Estuarine, Coastal and Shelf Science 53: 385–391. doi:10.1006/ecss.2001.0805.

    Article  CAS  Google Scholar 

  • Miranda, J., K.K. Balachandran, R. Ramesh, and M. Wafar. 2008. Nitrification in Kochi backwaters. Estuarine, Coastal and Shelf Science 78: 291–300. doi:10.1016/j.ecss.2007.12.004.

    Article  CAS  Google Scholar 

  • Miyazaki, T., E. Wada, and A. Hattori. 1973. Capacities of shallow waters of Sagami Bay for oxidation and reduction of inorganic nitrogen. Deep Sea Research 20: 571–577. doi:10.1016/0011-7471(73)90081-8.

    CAS  Google Scholar 

  • Morin, J., and J.W. Morse. 1999. Ammonium release from resuspended sediments in the Laguna Madre estuary. Marine Chemistry 65: 97–110. doi:10.1016/S0304-4203(99)00013-4.

    Article  CAS  Google Scholar 

  • Mosier, A.C., and C.A. Francis. 2008. Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary. Environmental Microbiology 10: 3002–3016. doi:10.1111/j.1462-2920.2008.01764.x.

    Article  CAS  Google Scholar 

  • Mosier, A.C., M.B. Lund, and C.A. Francis. 2012. Ecophysiology of an ammonia-oxidizing archaeon adapted to low-salinity habitats. Microbial Ecology 64: 955–963. doi:10.1007/s00248-012-0075-1.

    Article  CAS  Google Scholar 

  • Murrell, M.C., J.T. Hollibaugh, M.W. Silver, and P.S. Wong. 1999. Bacterioplankton dynamics in northern San Francisco Bay: role of particle association and seasonal freshwater flow. Limnology and Oceanography 44: 295–308. doi:10.4319/lo.1999.44.2.0295.

  • Najjar, R.G., C.R. Pyke, M.B. Adams, D. Breitburg, C. Hershner, M. Kemp, R. Howarth, et al. 2010. Potential climate-change impacts on the Chesapeake Bay. Estuarine, Coastal and Shelf Science 86: 1–20. doi:10.1016/j.ecss.2009.09.026.

    Article  CAS  Google Scholar 

  • Newell, S.E., A.R. Babbin, A. Jayakumar, and B.B. Ward. 2011. Ammonia oxidation rates and nitrification in the Arabian Sea. Global Biogeochemical Cycles 25, GB4016. doi:10.1029/2010GB003940.

    Article  CAS  Google Scholar 

  • Newell, S.E., S.E. Fawcett, and B.B. Ward. 2013. Depth distribution of ammonia oxidation rates and ammonia-oxidizer community composition in the Sargasso Sea. Limnology and Oceanography 58: 1491–1500. doi:10.4319/lo.2013.58.4.1491.

    CAS  Google Scholar 

  • Nicol, G.W., S. Leininger, and C. Schleper. 2011. Distribution and activity of ammonia-oxidizing archaea in natural environments. In Nitrification, ed. B.B. Ward, D.J. Arp, and M.G. Klotz, 157–178. Washington, D.C.: ASM Press.

    Chapter  Google Scholar 

  • Novick, E, G M Berg, A Malkassian, and D B Senn. 2014. Development Plan for the San Francisco Bay Nutrient Monitoring Program. Contribution No. 724. Richmond CA: San Francisco Estuary Institute.

  • Oksanen, J, F G Blanchet, P Legendre, P R Minchin, R B O’Hara, G L Simpson, P Solymos, M H H Stevens, and H Wagner. 2013. vegan: Community Ecology Package. R package version 2.0-10: http://CRAN.R-project.org/package=vegan.

  • Ouverney, C.C., and J.A. Fuhrman. 2000. Marine planktonic archaea take up amino acids. Applied and Environmental Microbiology 66: 4829–4833. doi:10.1128/AEM.66.11.4829-4833.2000.

    Article  CAS  Google Scholar 

  • Owens, N.J.P. 1986. Estuarine nitrification: a naturally occurring fluidized bed reaction? Estuarine, Coastal and Shelf Science 22: 31–44. doi:10.1016/0272-7714(86)90022-3.

    Article  CAS  Google Scholar 

  • Paerl, H.W. 2009. Controlling eutrophication along the freshwater–marine continuum: dual nutrient (N and P) reductions are essential. Estuaries and Coasts 32: 593–601. doi:10.1007/s12237-009-9158-8.

    Article  CAS  Google Scholar 

  • Pakulski, J.D., R. Benner, R. Amon, B. Eadie, and T. Whitledge. 1995. Community metabolism and nutrient cycling in the Mississippi River: evidence for intense nitrification at intermediate salinities. Marine Ecology Progress Series 117: 207–218. doi:10.3354/meps117207.

    Article  Google Scholar 

  • Pakulski, J.D., R. Benner, T. Whitledge, R. Amon, B. Eadie, L. Cifuentes, J. Ammerman, and D. Stockwell. 2000. Microbial metabolism and nutrient cycling in the Mississippi and Atchafalaya River plumes. Estuarine, Coastal and Shelf Science 50: 173–184. doi:10.1006/ecss.1999.0561.

    Article  CAS  Google Scholar 

  • Parker, A.E., R.C. Dugdale, and F.P. Wilkerson. 2012. Elevated ammonium concentrations from wastewater discharge depress primary productivity in the Sacramento River and the Northern San Francisco Estuary. Marine Pollution Bulletin 64: 574–586. doi:10.1016/j.marpolbul.2011.12.016.

    Article  CAS  Google Scholar 

  • Percuoco, V.P., L.H. Kalnejais, and L.V. Officer. 2015. Nutrient release from the sediments of the Great Bay Estuary, N.H. USA. Estuarine. Coastal and Shelf Science 161: 76–87. doi:10.1016/j.ecss.2015.04.006.

    Article  CAS  Google Scholar 

  • Pitcher, A., C. Wuchter, K. Siedenberg, S. Schouten, and J.S. Sinninghe Damsté. 2011. Crenarchaeol tracks winter blooms of ammonia-oxidizing Thaumarchaeota in the coastal North Sea. Limnology and Oceanography 56: 2308–2318. doi:10.4319/lo.2011.56.6.2308.

    Article  CAS  Google Scholar 

  • R Core Team. 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. R Foundation for Statistical Computing, Vienna, Austria: http://www.r-project.org.

  • Rabalais, N.N., R.E. Turner, R.J. Díaz, and D. Justic. 2009. Global change and eutrophication of coastal waters. ICES Journal of Marine Science 66: 1528–1537. doi:10.1093/icesjms/fsp047.

    Article  Google Scholar 

  • Rivera-Duarte, I., and A.R. Flegal. 1994. Benthic lead fluxes in San Francisco Bay, California, USA. Geochimica et Cosmochimica Acta 58: 3307–3313. doi:10.1016/0016-7037(94)90059-0.

    Article  CAS  Google Scholar 

  • Rockström, J., W. Steffen, K. Noone, A. Persson, F.S. Chapin, E.F. Lambin, T.M. Lenton, et al. 2009. A safe operating space for humanity. Nature 461: 472–475. doi:10.1038/461472a.

    Article  CAS  Google Scholar 

  • Ruhl, C.A., and D.H. Schoellhamer. 2004. Spatial and temporal variability of suspended-sediment concentration in a shallow estuarine environment. San Francisco Estuary and Watershed Science 2: Article 1.

  • Ruhl, C.A., D.H. Schoellhamer, R.P. Stumpf, and C.L. Lindsay. 2001. Combined use of remote sensing and continuous monitoring to analyse the variability of suspended-sediment concentrations in San Francisco Bay, California. Estuarine, Coastal and Shelf Science 53: 801–812. doi:10.1006/ecss.2000.0730.

    Article  Google Scholar 

  • Santoro, A.E., and K.L. Casciotti. 2011. Enrichment and characterization of ammonia-oxidizing archaea from the open ocean: phylogeny, physiology and stable isotope fractionation. The ISME Journal 5: 1796–1808. doi:10.1038/ismej.2011.58.

    Article  CAS  Google Scholar 

  • Santoro, A.E., K.L. Casciotti, and C.A. Francis. 2010. Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current. Environmental Microbiology 12: 1989–2006. doi:10.1111/j.1462-2920.2010.02205.x.

    Article  CAS  Google Scholar 

  • Santoro, A.E., C.M. Sakamoto, J.M. Smith, J.N. Plant, A.L. Gehman, A.Z. Worden, K.S. Johnson, C.A. Francis, and K.L. Casciotti. 2013. Measurements of nitrite production in and around the primary nitrite maximum in the central California Current. Biogeosciences 10: 7395–7410. doi:10.5194/bg-10-7395-2013.

    Article  CAS  Google Scholar 

  • Schoellhamer, D.H. 1996. Factors affecting suspended-solids concentrations in South San Francisco Bay, California. Journal of Geophysical Research 101: 12087–12095. doi:10.1029/96JC00747.

    Article  Google Scholar 

  • Schoellhamer, D.H. 2001. Influence of salinity, bottom topography, and tides on locations of estuarine turbidity maxima in northern San Francisco Bay. In Coastal and estuarine fine sediment processes, ed. W.H. McAnally and A.J. Mehta, 343–357. Amsterdam: Elsevier. doi:10.1016/S1568-2692(00)80130-8.

    Google Scholar 

  • Schubel, J.R., and V.S. Kennedy. 1984. The estuary as a filter: an introduction. In The estuary as a filter, ed. V.S. Kennedy, 1–11. Orlando: Academic Press. doi:10.1016/B978-0-12-405070-9.50007-4.

    Chapter  Google Scholar 

  • Sebilo, M., G. Billen, B. Mayer, D. Billiou, J.B. Grace, J. Garnier, and A. Mariotti. 2006. Assessing nitrification and denitrification in the Seine River and estuary using chemical and isotopic techniques. Ecosystems 9: 564–577. doi:10.1007/s10021-006-0151-9.

    Article  CAS  Google Scholar 

  • Sigman, D.M., K.L. Casciotti, M. Andreani, C. Barford, M. Galanter, and J.K. Böhlke. 2001. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Analytical Chemistry 73: 4145–4153. doi:10.1021/ac010088e.

    Article  CAS  Google Scholar 

  • Simon, N.S. 1989. Nitrogen cycling between sediment and the shallow-water column in the transition zone of the Potomac river and estuary. II. The role of wind-driven resuspension and adsorbed ammonium. Estuarine, Coastal and Shelf Science 28: 531–547. doi:10.1016/0272-7714(89)90028-0.

    Article  CAS  Google Scholar 

  • Smith, J.M., F.P. Chavez, and C.A. Francis. 2014a. Ammonium uptake by phytoplankton regulates nitrification in the sunlit ocean. PLoS ONE 9, e108173. doi:10.1371/journal.pone.0108173.s003.

    Article  CAS  Google Scholar 

  • Smith, J.M., K.L. Casciotti, F.P. Chavez, and C.A. Francis. 2014b. Differential contributions of archaeal ammonia oxidizer ecotypes to nitrification in coastal surface waters. The ISME Journal 8: 1704–1714. doi:10.1038/ismej.2014.11.

    Article  CAS  Google Scholar 

  • Smith, J.M., J. Damashek, F.P. Chavez, and C.A. Francis. 2015. Factors influencing nitrification rates and the abundance and transcriptional activity of ammonia-oxidizing microorganisms in the dark northeast Pacific Ocean. Limnology and Oceanography. doi:10.1002/lno.10235.

    Google Scholar 

  • Soetaert, K., J.J. Middelburg, C. Heip, P. Meire, S. Van Damme, and T. Maris. 2006. Long-term change in dissolved inorganic nutrients in the heterotrophic Scheldt estuary (Belgium, The Netherlands). Limnology and Oceanography 51: 409–423. doi:10.4319/lo.2006.51.1_part_2.0409.

    Article  CAS  Google Scholar 

  • Somville, M. 1978. A method for the measurement of nitrification rates in water. Water Research 12: 843–848. doi:10.1016/0043-1354(78)90036-2.

    Article  CAS  Google Scholar 

  • Somville, M. 1984. Use of nitrifying activity measurements for describing the effect of salinity on nitrification in the Scheldt estuary. Applied and Environmental Microbiology 47: 424–426.

    CAS  Google Scholar 

  • Tolar, B B. 2014. The influence of environmental factors including reactive oxygen species on the spatial and temporal distribution of marine Thaumarchaeota. Doctoral Thesis, University of Georgia.

  • Tourna, M., M. Stieglmeier, A. Spang, M. Könneke, A. Schintlmeister, T. Urich, M. Engel, et al. 2011. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proceedings of the National Academy of Sciences 108: 8420–8425. doi:10.1073/pnas.1013488108.

    Article  CAS  Google Scholar 

  • Urakawa, H., W. Martens-Habbena, C. Huguet, J.R. de la Torre, A.E. Ingalls, A.H. Devol, and D.A. Stahl. 2014. Ammonia availability shapes the seasonal distribution and activity of archaeal and bacterial ammonia oxidizers in the Puget Sound Estuary. Limnology and Oceanography 59: 1321–1335. doi:10.4319/lo.2014.59.4.1321.

    Article  CAS  Google Scholar 

  • Velinsky, D.J., J.R. Pennock, J.H. Sharp, L.A. Cifuentes, and M.L. Fogel. 1989. Determination of the isotopic composition of ammonium-nitrogen at the natural abundance level from estuarine waters. Marine Chemistry 26: 351–361. doi:10.1016/0304-4203(89)90040-6.

    Article  CAS  Google Scholar 

  • Veuger, B., A. Pitcher, S. Schouten, J.S. Sinninghe Damsté, and J.J. Middelburg. 2013. Nitrification and growth of autotrophic nitrifying bacteria and Thaumarchaeota in the coastal North Sea. Biogeosciences 10: 1775–1785. doi:10.5194/bg-10-1775-2013.

    Article  CAS  Google Scholar 

  • Walters, R.A., R.T. Cheng, and T.J. Conomos. 1985. Time scales of circulation and mixing processes of San Francisco Bay waters. Hydrobiologia 129: 13–36. doi:10.1007/BF00048685.

    Article  Google Scholar 

  • Wankel, S.D., C. Kendall, C.A. Francis, and A. Paytan. 2006. Nitrogen sources and cycling in the San Francisco Bay Estuary: a nitrate dual isotopic composition approach. Limnology and Oceanography 51: 1654–1664. doi:10.4319/lo.2006.51.4.1654.

    Article  CAS  Google Scholar 

  • Ward, B.B. 2012. The global nitrogen cycle. In Fundamentals of geobiology, eds. A. H. Knoll, D. E. Canfield, and K. O. Konhauser, 36–48. Blackwell Publishing Ltd. doi:10.1002/9781118280874.ch4.

  • Ward, B.B., and K.A. Kilpatrick. 1990. Relationship between substrate concentration and oxidation of ammonium and methane in a stratified water column. Continental Shelf Research 10: 1193–1208. doi:10.1016/0278-4343(90)90016-F.

    Article  Google Scholar 

  • Ward, B.B., R.J. Olson, and M.J. Perry. 1982. Microbial nitrification rates in the primary nitrite maximum off southern California. Deep Sea Research 29: 247–255. doi:10.1016/0198-0149(82)90112-1.

    Article  CAS  Google Scholar 

  • Ward, B.B., K.A. Kilpatrick, E.H. Renger, and R.W. Eppley. 1989. Biological nitrogen cycling in the nitracline. Limnology and Oceanography 34: 493–513. doi:10.4319/lo.1989.34.3.0493.

    Article  CAS  Google Scholar 

  • Warner, J.C., D.H. Schoellhamer, C.A. Ruhl, and J.R. Burau. 2004. Floodtide pulses after low tides in shallow subembayments adjacent to deep channels. Estuarine, Coastal and Shelf Science 60: 213–228. doi:10.1016/j.ecss.2003.12.011.

    Article  Google Scholar 

  • Wengrove, M.E., D.L. Foster, L.H. Kalnejais, V. Percuoco, and T.C. Lippmann. 2015. Field and laboratory observations of bed stress and associated nutrient release in a tidal estuary. Estuarine, Coastal and Shelf Science 161: 11–24. doi:10.1016/j.ecss.2015.04.005.

    Article  CAS  Google Scholar 

  • Wickham, H. 2009. ggplot2: elegant graphics for data analysis. New York: Springer.

    Book  Google Scholar 

  • Wilkerson, F.P., R.C. Dugdale, V.E. Hogue, and A. Marchi. 2006. Phytoplankton blooms and nitrogen productivity in San Francisco Bay. Estuaries and Coasts 29: 401–416. doi:10.1007/BF02784989.

    Article  CAS  Google Scholar 

  • Yigzaw, S K. 2014. Wastewater and water quality changes in lower South San Francisco Bay, 1957-2013. Master’s Thesis, San Jose State University.

  • Zhang, Y., X. Xie, N. Jiao, S.S.Y. Hsiao, and S.J. Kao. 2014. Diversity and distribution of amoA-type nitrifying and nirS-type denitrifying microbial communities in the Yangtze River estuary. Biogeosciences 11: 2131–2145. doi:10.5194/bg-11-2131-2014.

    Article  Google Scholar 

  • Zuur, A., E.N. Ieno, N. Walker, A.A. Saveliev, and G.M. Smith. 2009. Mixed effects models and extensions in ecology with R. New York: Springer.

    Book  Google Scholar 

Download references

Acknowledgments

We are grateful to the crews of the R/V Polaris and the R/V Questuary, as well as Jim Cloern, Tara Schraga, and the rest of the USGS Water Quality of San Francisco Bay group for enabling our participation in cruises and assisting with sample collection. Jason Smith assisted in cruise planning and sample collection onboard the Questuary and, along with Matt Forbes, Carly Buchwald, and Brian Peters, gave valuable help with isotopic measurements. Jim Cloern also provided useful advice in modeling SPM concentrations for Questuary sites. Carol Kendall and her group at USGS, particularly Sara Peek, kindly provided preliminary ammonium isotope data prior to publication. Thoughtful comments from two anonymous reviewers, as well as discussions with Alex Parker and Bradley Tolar, greatly improved this manuscript. This work was funded by National Science Foundation Biological Oceanography grant OCE-0847266 (to Chris Francis), and additional salary support came from the 2014–2015 Stanford-USGS Fellowship (to Julian Damashek).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Francis.

Additional information

Communicated by Carolyn A. Currin

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supp. Fig. 1

Cleveland dotplots of each environmental variable. Values are shown on the x-axes, while samples are displayed in random order along the y-axes. Clear outliers were identified in nitrite and SPM (JPG 530 kb)

High resolution image (EPS 2456 kb)

Supp. Fig. 2

Delta outflow (Dayflow) data for water year 2011-2012. Sampling dates in this study are marked by red crosses above the Dayflow data (JPG 170 kb)

High resolution image (EPS 1309 kb)

Supp. Table 1

Environmental data from San Francisco Bay waters. aModeled SPM concentrations (PDF 350 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damashek, J., Casciotti, K.L. & Francis, C.A. Variable Nitrification Rates Across Environmental Gradients in Turbid, Nutrient-Rich Estuary Waters of San Francisco Bay. Estuaries and Coasts 39, 1050–1071 (2016). https://doi.org/10.1007/s12237-016-0071-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-016-0071-7

Keywords

Navigation