Corporate social responsibility in a supply chain and competition from a vertically integrated firm

Abstract

This paper extends the analysis of the effects of corporate social responsibility in a bilateral monopoly to the case where a manufacturer and a retailer engaged in a supply chain face competition from a vertically integrated firm. The paper finds that when the manufacturer and the retailer non-cooperatively select their degrees of social concern, they choose to pursue pure profit maximization, irrespective of the order in which they make their choices. These choices put them at a disadvantage with respect to their vertically integrated competitor, who produces more output than they do and obtains higher profits than their joint profits. The paper then shows that when they cooperatively choose their degrees of social concern, they both choose positive degrees of social concern and, therefore, deviate from pure profit maximization. These choices give them a competitive edge over their vertically integrated rival: they produce a higher output and obtain higher joint profits than their competitor. In comparison with the non-cooperative outcome, the positive degrees of social concern cooperatively chosen by the manufacturer and the retailer imply higher output and profits for the retailer and the manufacturer and lower output and profits for their competitor. They also imply lower prices and higher consumer surplus and social welfare.

This is a preview of subscription content, access via your institution.

Fig. 1

Availability of data and material

Not applicable.

Notes

  1. 1.

    For example Goering (2007), Kopel and Brand (2012), Manasakis et al. (2014) and Fanti and Bucella (2019, 2020) examine duopolies where a socially concerned firm competes either with a profit-maximizing firm or another socially concerned firm under a variety of circumstances. Goering (2008) also considers competition between a socially concerned firm and a public firm and competition when a public firm, a private firm and a socially concerned firm are all present.

  2. 2.

    Brand and Grothe (2015) follow the analysis by Goering (2012), who begins to study the role of CSR in a bilateral monopoly allowing for the use of a two-part tariff that includes not only a wholesale price, as in Brand and Grothe (2015), but also a fixed fee. Brand and Grothe (2013) complete this analysis. Goering (2014) shows that a contract that includes a CSR component in the form of a fraction of Consumer Surplus allows the manufacturer to maximize its profits and fully control its retailer. Also related, but in a different set-up, is the study by Chen et al. (2016), who analyze the optimal degree of upstream firms’ CSR and its effects in a vertically related market with imperfect substitute products.

  3. 3.

    The apparel market in Mexico is one case where products manufactured and sold to final consumers by vertically integrated firms (like Zara, with its own chain of stores) compete with others sold by retailers that buy them from independent manufacturers (there are brands manufactured by independent firms—like Grupo Ismark—for exclusive sale at certain retailers. Notice, however, that no single retailer sells all the production of this particular manufacturer. See www.ismark.com.mx for details.).

  4. 4.

    This point is stressed by Goering (2014) and illustrated by the 37 different definitions of CSR examined by Dahlsrud (2008). Nonetheless, an analysis of these definitions shows that their differences are not as big as such high number might suggest, since they consistently refer to five dimensions and are largely congruent (Dahlsrud 2008).

  5. 5.

    Other parties—different from shareholders—often taken into account in the CSR literature are firm’s employees and agents affected by the environmental consequences of the firm’s decisions.

  6. 6.

    Another rationale for a profit-maximizing firm to engage in CSR behavior arises when consumers are willing to pay for products sold by firms practicing such behavior, as in García-Gallego and Georgantzís (2009).

  7. 7.

    Notice that there is in the literature an approach that refers to CSR as explicitly sacrificing profits. See Bénabou and Tirole (2010), who distinguish between this approach and other approaches compatible with profit maximization and provide an examination of them.

  8. 8.

    This way of modeling social responsibility follows Brand and Grothe (2015), García et al. (2018), Ouchida (2019) and Li and Zhou (2019).

  9. 9.

    The proofs are in “Appendix”.

  10. 10.

    Moreover, the quadratic dependence of CS on sales implies that the marginal negative impact of w on sales becomes more important because it occurs at the higher level of sales resulting from the higher \(\theta_{r}\) (\(\frac{\partial q}{\partial w} < 0\) and \(\frac{\partial q}{{\partial \theta_{r} }}\) > 0).

  11. 11.

    Notice that \(\frac{{\partial^{2} q_{r} }}{{\partial \theta_{r} \partial w}} < \frac{{\partial^{2} \left( {q_{r} + q_{v} } \right)}}{{\partial \theta_{r} \partial w}} < 0\) because \(\frac{{\partial^{2} q_{v} }}{{\partial \theta_{r} \partial w}} > 0\) and, similarly, \(\frac{{\partial q_{v} }}{\partial w} > 0\) and thus \(\frac{{\partial q_{r} }}{\partial w} < \frac{{\partial \left( {q_{r} + q_{v} } \right)}}{\partial w}\) < 0 and also \(\frac{{\partial q_{v} }}{{\partial \theta_{r} }} < 0\) and thus 0 < \(\frac{{\partial \left( {q_{r} + q_{v} } \right)}}{{\partial \theta_{r} }}\) < \(\frac{{\partial \left( {q_{r} } \right)}}{{\partial \theta_{r} }}\).

  12. 12.

    This is what happens in Greenhut and Ohta (1979) when a downstream firm and an upstream firm engaged in a vertical supply chain compete with a vertically integrated firm.

  13. 13.

    To choose their degrees of social concern cooperatively, firms can rely on the two ways explained in Brand and Grothe (2015): (i) by placing consumer representatives in the Board of Directors, and (ii) by committing themselves to a social strategy through the publication of social long-term goals. Here, it is shown how much this can accomplish without the need to coordinate all other relevant variables.

  14. 14.

    See Nash (1953), Rubinstein (1982) and Binmore Rubinstein and Wolinsky (1986).

  15. 15.

    It is shown in the appendix (Proposition A1) that if firms are allowed to choose degrees of social concern higher than unity, in which case a firm places a weight on consumer surplus higher than the consumers themselves, in the cooperative equilibrium the manufacturer’s degree of social concern is indeed higher than unity, and the changes in the values of the rest of the variables in comparison with the non-cooperative equilibrium have the same signs as those found above.

  16. 16.

    Notice that, in contrast to the previous scenarios, in this case uniqueness of equilibrium is not straightforward, and it is not examined.

  17. 17.

    It can be shown, using the same arguments as above, that when the manufacturer and the retailer are allowed to choose degrees of social concern higher than one the non-cooperative equilibrium continues to yield null degrees of social concern.

References

  1. Arya A, Mittendorf B, Yoon DH (2008) Friction in related-party trade when a rival is also a customer. Manag Sci 54(11):1850–1860

    Article  Google Scholar 

  2. Bénabou R, Tirole J (2010) Individual and corporate social responsibility. Economica 77(305):1–19

    Article  Google Scholar 

  3. Binmore K, Rubinstein A, Wolinsky A (1986) The Nash bargaining solution in economic modelling. Rand J Econ 17(2):176–188

    Article  Google Scholar 

  4. Brand B, Grothe M (2013) A note on ‘Corporate social responsibility and marketing channel coordination’. Res Econ 67(4):324–327

    Article  Google Scholar 

  5. Brand B, Grothe M (2015) Social responsibility in a bilateral monopoly. J Econ 115(3):275–289

    Article  Google Scholar 

  6. Carroll AB, Shabana KM (2010) The business case for corporate social responsibility: a review of concepts, research and practice. Int J Manag Rev 12(1):85–105

    Article  Google Scholar 

  7. Chen CL, Liu Q, Li J, Wang LF (2016) Corporate social responsibility and downstream price competition with retailer’s effort. Int Rev Econ Financ 46:36–54

    Article  Google Scholar 

  8. UN Global Compact and Accenture (2019) The Decade to Deliver. A Call to Business Action. United Nations Global Compact and Accenture Strategy

  9. Dahlsrud A (2008) How corporate social responsibility is defined: an analysis of 37 definitions. Corp Soc Responsib Environ Manag 15(1):1–13

    Article  Google Scholar 

  10. Fanti L, Buccella D (2017a) Corporate social responsibility in a game-theoretic context. Econ Polit Ind 44(3):371–390

    Article  Google Scholar 

  11. Fanti L, Buccella D (2017b) Corporate social responsibility, profits and welfare with managerial firms. Int Rev Econ 64(4):341–356

    Article  Google Scholar 

  12. Fanti L, Buccella D (2019) Managerial delegation games and corporate social responsibility. Manag Decis Econ 40(6):610–622

    Article  Google Scholar 

  13. Fanti L, Buccella D (2020) Strategic trade policy with socially concerned firms. Int Rev Econ. https://doi.org/10.1007/s12232-020-00345-x

    Article  Google Scholar 

  14. García A, Leal M, Lee SH (2018) Social responsibility in a bilateral monopoly with R&D. Econ Bull 38(3):1467–1475

    Google Scholar 

  15. García-Gallego A, Georgantzís N (2009) Market effects of changes in consumers’ social responsibility. J Econ Manag Strateg 18(1):235–262

    Article  Google Scholar 

  16. Gaudet G, Van Long N (1996) Vertical integration, foreclosure, and profits in the presence of double marginalization. J Econ Manag Strateg 5:409–432

    Article  Google Scholar 

  17. Goering GE (2007) The strategic use of managerial incentives in a non-profit firm mixed duopoly. Manag Decis Econ 28(2):83–91

    Article  Google Scholar 

  18. Goering GE (2008) Welfare impacts of a non-profit firm in mixed commercial markets. Econ Syst 32:326–334

    Article  Google Scholar 

  19. Goering GE (2012) Corporate social responsibility and marketing channel coordination. Res Econ 66(2):142–148

    Article  Google Scholar 

  20. Goering GE (2014) The profit-maximizing case for corporate social responsibility in a bilateral monopoly. Manag Decis Econ 35(7):493–499

    Article  Google Scholar 

  21. Greenhut ML, Ohta H (1979) Vertical integration of successive oligopolists. Am Econ Rev 69(1):137–141

    Google Scholar 

  22. Kopel M, Brand B (2012) Socially responsible firms and endogenous choice of strategic incentives. Econ Model 29(3):982–989

    Article  Google Scholar 

  23. KPMG (2017) The road ahead. The KPMG survey of corporate responsibility reporting 2017. KPMG International, Amstelveen

    Google Scholar 

  24. Lambertini L, Tampieri A (2012) Corporate social responsibility and firms’ ability to collude. In: Boubaker S, Nguyen DK (eds) Board directors and corporate social responsibility. Palgrave Macmillan, Houndmills, Basingstoke, pp 167–178

  25. Lambertini L, Tampieri A (2015) Incentives, performance and desirability of socially responsible firms in a Cournot oligopoly. Econ Model 50:40–48

    Article  Google Scholar 

  26. Li C, Zhou P (2019) Corporate social responsibility: the implications of cost improvement and promotion effort. Manag Decis Econ 40(6):633–638

    Article  Google Scholar 

  27. Manasakis C, Mitrokostas E, Petrakis E (2014) Strategic corporate social responsibility activities and corporate governance in imperfectly competitive markets. Manag Decis Econ 35(7):460–473

    Article  Google Scholar 

  28. Nash J (1953) Two-person cooperative games. Econometrica 21(1):128–140

    Article  Google Scholar 

  29. Ouchida Y (2019) Cooperative choice of corporate social responsibility in a bilateral monopoly model. Appl Econ Lett 26(10):799–806

    Article  Google Scholar 

  30. Planer-Friedrich L, Sahm M (2020) Strategic corporate social responsibility, imperfect competition, and market concentration. J Econ 129(1):79–101

    Article  Google Scholar 

  31. Rubinstein A (1982) Perfect equilibrium in a bargaining model. Econometrica 50(1):97–109

    Article  Google Scholar 

  32. Spengler JJ (1950) Vertical integration and antitrust policy. J Polit Econ 58(4):347–352

    Article  Google Scholar 

  33. Tirole J (1988) The theory of industrial organization. MIT Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

I am very grateful to three anonymous referees for helpful comments and suggestions.

Funding

Not applicable.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jorge Fernández-Ruiz.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Equilibrium outcome for exogenous degrees of social concern

For any given degrees of social concern \(\theta_{r}\) and \(\theta_{m}\), the equilibrium values are as follows:

$$\begin{aligned} & w^{*} = \frac{{ - \left( {a - c} \right)\theta_{r}^{2} + \left( {2a - 6c} \right)\theta_{r} - \left( {2a - c} \right)\theta_{m} + 9c + 3a}}{{12 - 4\theta_{r} - \theta_{m} }},\quad \\ &p^{*} = \frac{{ - \left( {c + 3a} \right)\theta_{r} - a\theta_{m} + 7c + 5a}}{{12 - 4\theta_{r} - \theta_{m} }} \end{aligned}$$
$$q_{r}^{*} = \frac{{\left( {a - c} \right)\left( {2\theta_{r} + \theta_{m} + 2} \right)}}{{12 - 4\theta_{r} - \theta_{m} }},\quad q_{v}^{*} = \frac{{\left( {a - c} \right)\left( { - 3\theta_{r} - \theta_{m} + 5} \right)}}{{12 - 4\theta_{r} - \theta_{m} }},\quad CS^{*} = \frac{{\left( {a - c} \right)^{2} \left( {7 - \theta_{r} } \right)^{2} }}{{2\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{2} }}$$
$$\begin{aligned} & \Pi_{m}^{*} = \frac{{\left( {a - c} \right)^{2} \left( {2\theta_{r} + \theta_{m} + 2} \right)\left( { - \theta_{r}^{2} + 2\theta_{r} - 2\theta_{m} + 3} \right)}}{{\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{2} }},\quad\\ & \Pi_{r}^{*} = \frac{{\left( {a - c} \right)^{2} \left( {2\theta_{r} + \theta_{m} + 2} \right)\left( {\theta_{r}^{2} - 5\theta_{r} + \theta_{m} + 2} \right)}}{{\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{2} }} \end{aligned}$$
$$\begin{aligned} \Pi_{v}^{*} &= \frac{{\left( {a - c} \right)^{2} \left( {5 - 3\theta_{r} - \theta_{m} } \right)^{2} }}{{\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{2} }},\;\\ V_{r}^{*} &= \frac{{\left( {a - c} \right)^{2} \left( {5\theta_{r}^{3} + 2\theta_{m} \theta_{r}^{2} - 30\theta_{r}^{2} - 6\theta_{m} \theta_{r} + 37\theta_{r} + 2\theta_{m}^{2} + 8\theta_{m} + 8} \right)}}{{2\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{2} }} \end{aligned}$$
$$V_{m}^{*} = \frac{{\left( {a - c} \right)^{2} \left( {\theta_{r}^{2} + 2\theta_{r} + 4\theta_{m} + 1} \right)}}{{2\left( {12 - 4\theta_{r} - \theta_{m} } \right)}},\;SW^{*} = \frac{{\left( {a - c} \right)^{2} \left( {7 - \theta_{r} } \right)\left( {17 - 7\theta_{r} - 2\theta_{m} } \right)}}{{2\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{2} }}$$

Proof of Proposition 1

The derivatives of the equilibrium variables are as follows:

$$\begin{aligned} &\frac{{\partial w^{*} }}{{\partial \theta_{m} }} = \frac{{ - \left( {a - c} \right)\left( {7 - \theta_{r} } \right)\left( {3 - \theta_{r} } \right)}}{{\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{2} }} < 0,\;\\ &\frac{{\partial w^{*} }}{{\partial \theta_{r} }} = \frac{{2\left( {a - c} \right)\left( {2\theta_{r}^{2} + \theta_{m} \theta_{r} - 12\theta_{r} - 5\theta_{m} + 18} \right)}}{{\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{2} }} > 0, \end{aligned}$$
$$\frac{{\partial q_{v}^{*} }}{{\partial \theta_{m} }} = \frac{{ - \left( {a - c} \right)\left( {7 - \theta_{r} } \right)}}{{\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{2} }} < 0,\;\frac{{\partial q_{v}^{*} }}{{\partial \theta_{r} }} = \frac{{ - \left( {a - c} \right)\left( {16 + \theta_{m} } \right)}}{{\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{2} }} < 0,\;\frac{{\partial q_{r}^{*} }}{{\partial \theta_{m} }} = \frac{{2\left( {a - c} \right)\left( {7 - \theta_{r} } \right)}}{{\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{2} }} > 0,$$
$$\frac{{\partial q_{r}^{*} }}{{\partial \theta_{r} }} = \frac{{2\left( {a - c} \right)\left( {16 + \theta_{m} } \right)}}{{\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{2} }} > 0,\;\frac{{\partial p^{*} }}{{\partial \theta_{m} }} = \frac{{ - \left( {a - c} \right)\left( {7 - \theta_{r} } \right)}}{{\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{2} }} < 0,\;\frac{{\partial p^{*} }}{{\partial \theta_{r} }} = \frac{{ - \left( {a - c} \right)\left( {16 + \theta_{m} } \right)}}{{\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{2} }} < 0,$$
$$\frac{{\partial CS^{*} }}{{\partial \theta_{m} }} = \frac{{\left( {a - c} \right)^{2} \left( {7 - \theta_{r} } \right)^{2} }}{{\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{3} }} > 0,\;\frac{{\partial CS^{*} }}{{\partial \theta_{r} }} = \frac{{\left( {a - c} \right)^{2} \left( {16 + \theta_{m} } \right)\left( {7 - \theta_{r} } \right)}}{{\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{3} }} > 0$$
$$\frac{{\partial V_{m}^{*} }}{{\partial \theta_{m} }} = \frac{{\left( {a - c} \right)^{2} \left( {7 - \theta_{r} } \right)^{2} }}{{2\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{2} }} > 0,\;\frac{{\partial V_{m}^{*} }}{{\partial \theta_{r} }} = \frac{{\left( {a - c} \right)^{2} \left( {7 - \theta_{r} } \right)\left( {2\theta_{r} + \theta_{m} + 2} \right)}}{{\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{2} }} > 0$$
$$\frac{{\partial V_{r}^{*} }}{{\partial \theta_{m} }} = \frac{{\left( {a - c} \right)^{2} \left( {7 - \theta_{r} } \right)\left( { - \theta_{r}^{2} - \theta_{m} \theta_{r} - \theta_{r} + 4\theta_{m} + 8} \right)}}{{\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{3} }} > 0,$$
$$\frac{{\partial V_{r}^{*} }}{{\partial \theta_{r} }} = \frac{{\left( {a - c} \right)^{2} \left( { - 20\theta_{r}^{3} - 15\theta_{m} \theta_{r}^{2} + 180\theta_{r}^{2} - 4\theta_{m}^{2} \theta_{r} + 84\theta_{m} \theta_{r} - 572\theta_{r} + 22\theta_{m}^{2} - 45\theta_{m} + 508} \right)}}{{2\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{3} }} > 0,$$

To see that \(\frac{{\partial V_{r}^{*} }}{{\partial \theta_{r} }} > 0\) notice that the denominator is positive and the numerator is also positive because it is decreasing in \(\theta_{r}\) and it is positive even when \(\theta_{r} = 1\) (\(\frac{{\partial V_{r}^{*} }}{{\partial \theta_{r} }} > \frac{{\left( {a - c} \right)^{2} \left( {18\theta_{m}^{2} + 24\theta_{m} + 96} \right)}}{{2\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{3} }} > 0\))

$$\frac{{\partial SW^{*} }}{{\partial \theta_{m} }} = \frac{{\left( {a - c} \right)^{2} \left( {7 - \theta_{r} } \right)\left( {5 - 3\theta_{r} - \theta_{m} } \right)}}{{\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{3} }} > 0,\;\frac{{\partial SW^{*} }}{{\partial \theta_{r} }} = \frac{{\left( {a - c} \right)^{2} \left( {16 + \theta_{m} } \right)\left( {5 - 3\theta_{r} - \theta_{m} } \right)}}{{\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{3} }} > 0$$

It is also of interest to note that:

$$\frac{{\partial \Pi_{v}^{*} }}{{\partial \theta_{m} }} = \frac{{ - 2\left( {a - c} \right)^{2} \left( {7 - \theta_{r} } \right)\left( {5 - 3\theta_{r} - \theta_{m} } \right)}}{{\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{3} }} < 0,\;\frac{{\partial \Pi_{v}^{*} }}{{\partial \theta_{r} }} = \frac{{ - 2\left( {a - c} \right)^{2} \left( {16 + \theta_{m} } \right)\left( {5 - 3\theta_{r} - \theta_{m} } \right)}}{{\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{3} }} < 0$$
$$\frac{{\partial \Pi_{m}^{*} }}{{\partial \theta_{r} }} = \frac{{2\left( {a - c} \right)^{2} \left( {7 - \theta_{r} } \right)\left( { - 4\theta_{r}^{2} - 3\theta_{m} \theta_{r} + 8\theta_{r} - \theta_{m}^{2} - 3\theta_{m} + 12} \right)}}{{\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{3} }} > 0,$$
$$\frac{{\partial \Pi_{r}^{*} }}{{\partial \theta_{m} }} = \frac{{\left( {a - c} \right)^{2} \left( {7 - \theta_{r} } \right)\left( { - \theta_{m} \theta_{r} - 8\theta_{r} + 4\theta_{m} + 8} \right)}}{{\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{3} }} > 0,$$

Proof of Proposition 2

Assume first simultaneous choice of the degrees of social concern.

The derivatives of the profits of the manufacturer and the retailer with respect to their own degrees of social concern are given by:

$$\frac{{\partial \Pi_{m}^{*} }}{{\partial \theta_{m} }} = \frac{{ - \left( {a - c} \right)^{2} \theta_{m} \left( {7 - \theta_{r} } \right)^{2} }}{{\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{3} }} \le 0,$$
$$\frac{{\partial \Pi_{r}^{*} }}{{\partial \theta_{r} }} = \frac{{\left( {a - c} \right)^{2} \left( {\left( { - 8\theta_{r}^{2} - 6\theta_{m} \theta_{r} + 72\theta_{r} - 2\theta_{m}^{2} + 28\theta_{m} - 216} \right)\theta_{r} + 11\theta_{m}^{2} + 2\theta_{m} - 40} \right)}}{{\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{3} }} < 0$$

Thus, it is optimal for the manufacturer to set \(\theta_{m} = 0\) because, for any \(\theta_{r} \epsilon \left[ {0,1} \right]\), \(\frac{{\partial \Pi_{m}^{*} }}{{\partial \theta_{m} }} = 0\) for \(\theta_{m} =\) 0 while \(\frac{{\partial \Pi_{m}^{*} }}{{\partial \theta_{m} }} < 0\) whenever \(\theta_{m} > 0\) and, reciprocally, it is optimal for the retailer to set \(\theta_{r} = 0\) because \(\frac{{\partial \Pi_{r}^{*} }}{{\partial \theta_{r} }} < 0\) for all \(\theta_{m} \epsilon \left[ {0,1} \right]\) and \(\theta_{r} \epsilon \left[ {0,1} \right]\).

Assume now sequential choice of the degrees of social concern with the retailer as the leader.

The manufacturer chooses \(\theta_{m}\) knowing the retailer’s choice. The manufacturer’s reaction function is to set \(\theta_{m} = 0\) for all \(\theta_{r} \epsilon \left[ {0,1} \right]\) because, again, irrespective of the value of \(\theta_{r}\), \(\frac{{\partial \Pi_{m}^{*} }}{{\partial \theta_{m} }} = 0\) for \(\theta_{m} =\) 0 and \(\frac{{\partial \Pi_{m}^{*} }}{{\partial \theta_{m} }} < 0\) whenever \(\theta_{m} > 0\). Replacing the previous manufacturer’s reaction function \(\theta_{m} = 0\) into the retailer’s profits, the retailer chooses \(\theta_{r} = 0\) because \(\Pi_{r}^{*}\) is always strictly decreasing in \(\theta_{r}\).

Assume finally sequential choices of the degrees of social concern with the manufacturer as the leader.

The retailer chooses \(\theta_{r}\) knowing the manufacturer’s choice \(\theta_{m}\). The retailer chooses \(\theta_{r} = 0\) irrespective of the value of \(\theta_{m}\) because \(\frac{{\partial \Pi_{r}^{*} }}{{\partial \theta_{r} }} < 0\) for all \(\theta_{m} \epsilon \left[ {0,1} \right]\) and \(\theta_{r} \epsilon \left[ {0,1} \right]\). Thus, the retailer’s reaction function is to set \(\theta_{r} = 0\) for all \(\theta_{m} \epsilon \left[ {0,1} \right]\). Replacing this reaction function into the manufacturer’s profits, the manufacturer chooses \(\theta_{m} = 0\) because it continues to hold that \(\frac{{\partial \Pi_{m}^{*} }}{{\partial \theta_{m} }} = 0\) for \(\theta_{m} =\) 0 and \(\frac{{\partial \Pi_{m}^{*} }}{{\partial \theta_{m} }} < 0\) whenever \(\theta_{m} > 0\).

Proof of Lemma 1

Consider the problem of choosing \(\theta_{m} \epsilon \left[ {0,1} \right]\), \(\theta_{r} \epsilon \left[ {0,1} \right]\) to solve:

$${\text{Max}}\,\Pi_{m}^{*} = \frac{{\left( {a - c} \right)^{2} \left( {2\theta_{r} + \theta_{m} + 2} \right)\left( { - \theta_{r}^{2} + 2\theta_{r} - 2\theta_{m} + 3} \right)}}{{\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{2} }}$$
$${\text{s}} . {\text{t}}.\,\Pi_{r}^{*} = \frac{{\left( {a - c} \right)^{2} \left( {2\theta_{r} + \theta_{m} + 2} \right)\left( {\theta_{r}^{2} - 5\theta_{r} + \theta_{m} + 2} \right)}}{{\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{2} }} = \bar{\Pi }_{r}$$

Notice that the constraint implicitly defines \(\theta_{r}\) as a function of \(\theta_{m}\) with \(\frac{{{\text{d}}\theta_{r} }}{{{\text{d}}\theta_{m} }} = \frac{{ - \frac{{\partial \Pi_{r}^{*} }}{{\partial \theta_{m} }}}}{{\frac{{\partial \Pi_{r}^{*} }}{{\partial \theta_{r} }}}} > 0\) because \(\frac{{\partial \Pi_{r}^{*} }}{{\partial \theta_{m} }} > 0\) and \(\frac{{\partial \Pi_{r}^{*} }}{{\partial \theta_{r} }} < 0\). One can thus write \(\theta_{r}\) as a function of \(\theta_{m}\) in the objective function to simplify the maximization problem into one that has \(\theta_{m}\) as the only decision variable. The first-order condition of this simplified problem is:

$$\frac{{\partial \Pi_{m}^{*} }}{{\partial \theta_{m} }} + \frac{{\partial \Pi_{m}^{*} }}{{\partial \theta_{r} }}\left( {\frac{{ - \frac{{\partial \Pi_{r}^{*} }}{{\partial \theta_{m} }}}}{{\frac{{\partial \pi_{r}^{*} }}{{\partial \theta_{r} }}}}} \right) = \frac{{\left( {a - c} \right)^{2} \left( {7 - \theta_{r} } \right)^{2} \left( {2\theta_{r} + \theta_{m} + 2} \right)\left( {8 - 8\theta_{r} - 3\theta_{m} } \right)}}{{\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{2} D}} = 0$$

with

$$D = \left( {8\theta_{r}^{2} + 6\theta_{m} \theta_{r} - 72\theta_{r} + 2\theta_{m}^{2} - 28\theta_{m} + 216} \right)\theta_{r} - 11\theta_{m}^{2} - 2\theta_{m} + 40 > 0$$

Notice now that when \(\theta_{m} = 1\) and \(\theta_{r} = 5/8\), the retailer profits are \(\Pi_{r}^{*} = \frac{{\left( {a - c} \right)^{2} }}{64}\) and consider two different cases:

  1. i.

    Assume that \(\bar{\Pi }_{r} \le \frac{{\left( {a - c} \right)^{2} }}{64}\). In this case, there is a unique pair \(\theta_{m} \epsilon \left[ {0,1} \right]\), \(\theta_{r} \epsilon \left[ {0,1} \right]\) that satisfies both the first-order condition, which amounts to \(8 - 8\theta_{r} - 3\theta_{m} = 0,\) and the constraint \(\Pi_{r}^{*} = \frac{{\left( {a - c} \right)^{2} \left( {2\theta_{r} + \theta_{m} + 2} \right)\left( {\theta_{r}^{2} - 5\theta_{r} + \theta_{m} + 2} \right)}}{{\left( {12 - 4\theta_{r} - \theta_{m} } \right)^{2} }} = \bar{\Pi }_{r}\). To see this, notice that replacing \(\theta_{m} = \frac{{8 - 8\theta_{r} }}{3}\) from the first-order condition into \(\Pi_{r}^{*}\) one can write the constraint as \(\frac{{\left( {a - c} \right)^{2} \left( {2 - 3\theta_{r} } \right)}}{8} = \bar{\Pi }_{r}\). Solving this equation for \(\theta_{r}\), one obtains \(\theta_{r} = \frac{{2\left( {a - c} \right)^{2} - 8\bar{\Pi }_{r} }}{{3\left( {a - c} \right)^{2} }}\), and replacing this back into the first-order condition, one obtains \(\theta_{m} = \frac{{8\left( {a - c} \right)^{2} + 64\bar{\Pi }_{r} }}{{9\left( {a - c} \right)^{2} }}\). When \(\bar{\Pi }_{r} \le \frac{{\left( {a - c} \right)^{2} }}{64}\), these two values satisfy \(\theta_{m} \epsilon \left[ {0,1} \right]\), \(\theta_{r} \epsilon \left[ {0,1} \right]\).

  2. ii.

    \(\bar{\Pi }_{r} > \frac{{\left( {a - c} \right)^{2} }}{64}\) implies \(\theta_{r} < 5/8\), because \(\frac{{\partial \Pi_{r}^{*} }}{{\partial \theta_{m} }} > 0\) and \(\frac{{\partial \Pi_{r}^{*} }}{{\partial \theta_{r} }} < 0\). But \(\theta_{r} < 5/8\) implies that the first-order condition is never satisfied because it implies \(8 - 8\theta_{r} - 3\theta_{m} > 3 - 3\theta_{m} \ge 0\) and so the derivative of the objective function expressed as a function of \(\theta_{m}\), the only decision variable, is always positive. Thus, one has a corner solution with \(\theta_{m} = 1\)

Proof of Proposition 4

$$w^{C} - w^{N} = - 0.0752\left( {a - c} \right),\;q_{v}^{C} - q_{v}^{N} = - 0.1191\left( {a - c} \right),\;q_{r}^{C} - q_{r}^{N} = 0.2382\left( {a - c} \right)$$
$$w^{C} - w^{N} = - 0.0752\left( {a - c} \right),\;p^{C} - p^{N} = - 0.1191\left( {a - c} \right)$$
$$CS^{C} - CS^{N} = 0.0766\left( {a - c} \right)^{2} ,\;V_{m}^{C} - V_{m}^{N} = 0.2758\left( {a - c} \right)^{2} ,\;V_{r}^{C} - V_{r}^{N} = 0.1210\left( {a - c} \right)^{2}$$
$$\Pi_{v}^{C} - \Pi_{v}^{N} = - 0.0851\left( {a - c} \right)^{2} ,\;\Pi_{m}^{C} - \Pi_{m}^{N} = 0.0291\left( {a - c} \right)^{2} ,\;\Pi_{r}^{C} - \Pi_{r}^{N} = 0.0219\left( {a - c} \right)^{2}$$
$$SW^{C} - SW^{N} = 0.0425\left( {a - c} \right)^{2} .$$

Proposition A1

When the degrees of social concern are allowed to be higher than one, then cooperative choice of these degrees results in \(\theta_{m}^{H} = \frac{104}{81}\), \(\theta_{r}^{H} = \frac{14}{27}\). These choices lead to:

\(q_{v}^{H} = \frac{a - c}{4}\), \(q_{r}^{H} = \frac{a - c}{2}\), \(w^{H} = \frac{31c + 5a}{36}\), \(p^{H} = \frac{3c + a}{4}\), \(CS^{H} = \frac{{9\left( {a - c} \right)^{2} }}{32}\), \(\Pi_{v}^{H} = \frac{{\left( {a - c} \right)^{2} }}{16}\), \(\Pi_{m}^{H} = \frac{{5\left( {a - c} \right)^{2} }}{72}\), \(\Pi_{r}^{H} = \frac{{\left( {a - c} \right)^{2} }}{18}\), \(SW^{H} = \frac{{15\left( {a - c} \right)^{2} }}{32}\), \(V_{m}^{H} = \frac{{31\left( {a - c} \right)^{2} }}{72}\), \(V_{r}^{H} = \frac{{29\left( {c - a } \right)^{2} }}{144}\)

Proof

Replacing \(\theta_{m} = \frac{{8 - 8\theta_{r} }}{3}\) from Eq. (11) into \(\Pi_{m}^{*}\) and \(\Pi_{r}^{*}\), one can writeFootnote 17 the Nash Product P given in (13) as \(P = \frac{{\left( {a - c} \right)^{4} \left( {9\theta_{r} - 4} \right)\left( {16 - 27\theta_{r} } \right)}}{1728}\) which is maximized when \(\theta_{r} = 14/27\). Replacing this value back in Eq. (11) yields \(\theta_{m} = \frac{104}{81}\). These values can then be inserted into the equilibrium outcomes given in Proposition 1.□

The differences between the equilibrium values with and without cooperation when the degrees of social concern can be higher than unity are:

$$q_{v}^{H} - q_{v}^{N} = - \frac{a - c}{6} < 0,\;q_{r}^{H} - q_{r}^{N} = \frac{a - c}{3} > 0,\;w^{H} - w^{N} = - \frac{a - c}{9} < 0,$$
$$p^{H} - p^{N} = - \frac{a - c}{6} < 0,\;CS^{H} - CS^{N} = \frac{{\left( {a - c} \right)^{2} }}{9} > 0,\;\Pi_{v}^{H} - \Pi_{v}^{N} = - \frac{{\left( {a - c} \right)^{2} }}{9} < 0$$
$$\Pi_{m}^{H} - \Pi_{m}^{N} = \frac{{\left( {a - c} \right)^{2} }}{36} > 0,\;\Pi_{r}^{H} - \Pi_{r}^{N} = \frac{{\left( {a - c} \right)^{2} }}{36} > 0,\;SW^{H} - SW^{N} = \frac{{\left( {a - c} \right)^{2} }}{18} > 0$$
$$V_{m}^{H} - V_{m}^{N} = \frac{{7\left( {a - c} \right)^{2} }}{18} > 0,\;V_{r}^{H} - V_{r}^{N} = \frac{{25\left( {a - c} \right)^{2} }}{144} > 0$$

Proof of Proposition 5

$$w^{**} = \frac{{\left( {c - a} \right)\theta_{r}^{2} + \left( {2a - 6c + 2c\theta_{v} } \right)\theta_{r} - \left( {2a - c} \right)\theta_{m} + \left( {a + c} \right)\theta_{v}^{2} - \left( {4a + 6c} \right)\theta_{v} + 9c + 3a}}{{12 + \left( {2\theta_{v} - 4} \right)\theta_{r} - \theta_{m} + 2\theta_{v}^{2} - 10\theta_{v} }}$$

Using this wholesale price, one obtains the equilibrium profits:

$$\Pi_{m}^{**} = \frac{{\left( {a - c} \right)^{2} \left( {2 + 2\theta_{r} + \theta_{m} - 3\theta_{v} - \theta_{r} \theta_{v} + \theta_{v}^{2} } \right)\left( {3 + 2\theta_{r} - \theta_{r}^{2} - 2\theta_{m} - 4\theta_{v} + \theta_{v}^{2} } \right)}}{{\left( {12 - 4\theta_{r} - \theta_{m} - 10\theta_{v} + 2\theta_{r} \theta_{v} + 2\theta_{v}^{2} } \right)^{2} }}$$
$$\Pi_{r}^{**} = \frac{{\left( {a - c} \right)^{2} \left( {2 + 2\theta_{r} + \theta_{m} - 3\theta_{v} - \theta_{r} \theta_{v} + \theta_{v}^{2} } \right)\left( {2 - 5\theta_{r} + \theta_{m} + \theta_{r}^{2} - 3\theta_{v} + 2\theta_{r} \theta_{v} + \theta_{v}^{2} } \right)}}{{\left( {12 - 4\theta_{r} - \theta_{m} - 10\theta_{v} + 2\theta_{r} \theta_{v} + 2\theta_{v}^{2} } \right)^{2} }}$$
$$\Pi_{v}^{**} = \frac{{\left( {a - c} \right)^{2} \left( {5 - 3\theta_{r} - \theta_{m} + \theta_{r} \theta_{v} - \theta_{v}^{2} } \right)\left( {5 - 3\theta_{r} - \theta_{m} - 7\theta_{v} + 2\theta_{r} \theta_{v} + 2\theta_{v}^{2} } \right)}}{{\left( {12 - 4\theta_{r} - \theta_{m} - 10\theta_{v} + 2\theta_{v}^{2} + 2\theta_{v} \theta_{r} } \right)^{2} }}$$

and using these profit functions one obtains the results in the proposition:

  1. i.

    given any \(\theta_{m}\) and \(\theta_{v}\), it is optimal for the retailer to set \(\theta_{r} = 0\) because \(\Pi_{r}^{**}\) is strictly decreasing in \(\theta_{r}\): \(\frac{{\partial \Pi_{r}^{**} }}{{\partial \theta_{r} }} = - \frac{{\left( {a - c} \right)^{2} N}}{{D^{3} }}\) with

\(D = 2\theta_{v} \theta_{r} - 4\theta_{r} - \theta_{m} + 2\theta_{v}^{2} - 10\theta_{v} + 12 > 0\) because it is decreasing in \(\theta_{v}\) and positive when \(\theta_{v} = 1\), and

$$N = \left( \begin{gathered} 2\theta _{v} ^{2} \theta _{r} ^{3} - 8\theta _{v} \theta _{r} ^{3} + 8\theta _{r} ^{3} - 3\theta _{v} \theta _{m} \theta _{r} ^{2} + 6\theta _{m} \theta _{r} ^{2} + 6\theta _{v} ^{3} \theta _{r} ^{2} - 42\theta _{v} ^{2} \theta _{r} ^{2} + \\ 96\theta _{v} \theta _{r} ^{2} - 72\theta _{r} ^{2} + 2\theta _{m} ^{2} \theta _{r} - 4\theta _{v} ^{2} \theta _{m} \theta _{r} + 22\theta _{v} \theta _{m} \theta _{r} - 28\theta _{m} \theta _{r} + 6\theta _{v} ^{4} \theta _{r} - 60\theta _{v} ^{3} \theta _{r} + \\ 222\theta _{v} ^{2} \theta _{r} - 360\theta _{v} \theta _{r} + 216\theta _{r} + 5\theta _{v} \theta _{m} ^{2} - 11\theta _{m} ^{2} + 7\theta _{v} ^{3} \theta _{m} - 30\theta _{v} ^{2} \theta _{m} + 33\theta _{v} \theta _{m} - \\ 2\theta _{m} + 2\theta _{v} ^{5} - 10\theta _{v} ^{4} + 6\theta _{v} ^{3} + 42\theta _{v} ^{2} - 80\theta _{v} + 40 \\ \end{gathered} \right) > 0\,{\text{because}}:$$
  1. ii.

    N is strictly increasing in \(\theta_{r}\):

\(\frac{\partial N}{{\partial \theta_{r} }} = 2\left( {3\theta_{v}^{2} \theta_{r}^{2} - 12\theta_{v} \theta_{r}^{2} + 12\theta_{r}^{2} - 3\theta_{v} \theta_{m} \theta_{r} + 6\theta_{m} \theta_{r} + 6\theta_{v}^{3} \theta_{r} - 42\theta_{v}^{2} \theta_{r} + 96\theta_{v} \theta_{r} - 72\theta_{r} + \theta_{m}^{2} - 2\theta_{v}^{2} \theta_{m} + 11\theta_{v} \theta_{m} - 14\theta_{m} + 3\theta_{v}^{4} - 30\theta_{v}^{3} + 111\theta_{v}^{2} - 180\theta_{v} + 108} \right) > 0\) because it is decreasing in \(\theta_{m}\) (\(\frac{{\partial^{2} N}}{{\partial \theta_{m} \partial \theta_{r} }} = - 6\theta_{v} \theta_{r} + 12\theta_{r} + 4\theta_{m} - 4\theta_{v}^{2} + 22\theta_{v} - 28 < 0\) since it increases in \(\theta_{v}\) and it is negative even when \(\theta_{v} = 1\)) and it is positive even when \(\theta_{m} = 1\) (When \(\theta_{m} = 1\), \(\frac{\partial N}{{\partial \theta_{r} }} = 2\left( {3\theta_{v}^{2} \theta_{r}^{2} - 12\theta_{v} \theta_{r}^{2} + 12\theta_{r}^{2} + 6\theta_{v}^{3} \theta_{r} - 42\theta_{v}^{2} \theta_{r} + 93\theta_{v} \theta_{r} - 66\theta_{r} + 3\theta_{v}^{4} - 30\theta_{v}^{3} + 109\theta_{v}^{2} - 169\theta_{v} + 95} \right) > 0\) because it is decreasing in \(\theta_{r}\) (\(\frac{{\partial^{2} N}}{{\partial \theta_{r}^{2} }} = 6\left( {\theta_{v} - 2} \right)\left( {2\theta_{v} \theta_{r} - 4\theta_{r} + 2\theta_{v}^{2} - 10\theta_{v} + 11} \right) < 0 )\) and it is positive even when \(\theta_{r} = 1\): when \(\theta_{m} = 1\) and \(\theta_{r} = 1\),\(\frac{\partial N}{{\partial \theta_{r} }} = 6\theta_{v}^{4} - 48\theta_{v}^{3} + 140\theta_{v}^{2} - 176\theta_{v} + 82 > 0\))

  1. iii.

    \(N > 0\) when \(\theta_{r} = 0\), because then: \(N = \left( {\theta_{m} + \theta_{v}^{2} - 3\theta_{v} + 2} \right)\left( {5\theta_{v} \theta_{m} - 11\theta_{m} + 2\theta_{v}^{3} - 4\theta_{v}^{2} - 10\theta_{v} + 20} \right)\) is the product of two positive terms, since each term is decreasing in \(\theta_{v}\) and positive when \(\theta_{v} = 1\).

  2. iv.

    given any \(\theta_{r}\) and \(\theta_{v}\), it is optimal for the manufacturer to set \(\theta_{m} = 0\) because \(\Pi_{m}^{**}\) is decreasing in \(\theta_{m}\):\(\frac{{\partial \Pi_{m}^{**} }}{{\partial \theta_{m} }}\) = \(- \frac{{\left( {a - c} \right)^{2} \theta_{m} \left( {\theta_{r} + 3\theta_{v} - 7} \right)^{2} }}{{\left( {2\theta_{v} \theta_{r} - 4\theta_{r} - \theta_{m} + 2\theta_{v}^{2} - 10\theta_{v} + 12} \right)^{3} }}\) < 0 for \(\theta_{m} > 0\) (To see that the denominator is positive, notice that it is positive when \(\theta_{v} = 1\) and it is decreasing in \(\theta_{v}\))

  3. v.

    given \(\theta_{m} = \theta_{r} = 0\), \(\Pi_{v}^{**}\) is concave, and the first-order condition \(\frac{{\partial \Pi_{v}^{**} }}{{\partial \theta_{v} }} = \frac{{\left( {a - c} \right)^{2} \left( {13\theta_{v}^{4} - 93\theta_{v}^{3} + 231\theta_{v}^{2} - 215\theta_{v} + 40} \right)}}{{4\left( {\theta_{v} - 3} \right)^{3} \left( {\theta_{v} - 2} \right)^{3} }} = 0\) yields \(\theta_{v}^{NV} = 0.2439\).

Using the equilibrium degrees of CSR, one can obtain the equilibrium values for the rest of the variables. The inequalities in the proposition hold because:

$$q_{v}^{NV} - q_{v}^{N} = 0.0937\left( {a - c} \right),\;q_{r}^{NV} - q_{r}^{N} = - 0.0295\left( {a - c} \right), \;\Pi_{v}^{NV} - \Pi_{v}^{N} = 0.0063\left( {a - c} \right)^{2}$$
$$\Pi_{m}^{NV} - \Pi_{m}^{N} = - 0.0121\left( {a - c} \right)^{2} ,\;\Pi_{r}^{NV} - \Pi_{r}^{N} = - 0.0090\left( {a - c} \right)^{2}$$
$$w^{NV} - w^{N} = - 0.0347\left( {a - c} \right),\;p^{NV} - p^{N} = - 0.0642\left( {a - c} \right)$$
$$CS^{NV} - CS^{N} = 0.0395\left( {a - c} \right)^{2} ,\;SW^{NV} - SW^{N} = 0.0247\left( {a - c} \right)^{2} .$$

Proof of Proposition 6

When \(\theta_{v} = 0\) and \(\theta_{m} = 1\), the Nash Product \(P^{V}\) can be written as:\(P^{V} = - \frac{{\left( {a - c} \right)^{4} AB}}{C}\), with

\(A = \left( {143825692\theta_{r}^{3} - 37939774\theta_{r}^{2} - 762154664\theta_{r} + 41182819} \right)\), \(B = \left( {1820162036\theta_{r}^{3} - 6644541894\theta_{r}^{2} - 6683867938\theta_{r} + 6118794979} \right)\), \(C = 65446516094957228\left( {4\theta_{r} - 11} \right)^{4}\) and it is maximized at the only point where its derivative vanishes, \(\theta_{r} = 0.4008\).

Reciprocally, given that \(\theta_{m} = 1\) and \(\theta_{r} = 0.4008\), it can be checked that \(\frac{{\partial \prod_{v}^{**} }}{{\partial \theta_{v} }} = - 0.0102 < 0\) when \(\theta_{v} = 0\) and that \(\frac{{\partial \prod_{v}^{**} }}{{\partial \theta_{v} }}\) has no roots in the interval \(\theta_{v} \in \left[ {0,1} \right]\) and thus, it is optimal for the vertically integrated firm to set \(\theta_{v} = 0\).

The inequalities in the proposition hold because:

$$q_{v}^{CV} - q_{v}^{NV} = - 0.2127\left( {a - c} \right),\;q_{r}^{CV} - q_{r}^{NV} = 0.2674\left( {a - c} \right),$$
$$\Pi_{v}^{CV} - \Pi_{v}^{NV} = - 0.0913\left( {a - c} \right)^{2} ,\;\Pi_{m}^{CV} - \Pi_{m}^{NV} = 0.0411\left( {a - c} \right)^{2} ,$$
$$\Pi_{r}^{CV} - \Pi_{r}^{NV} = 0.0310\left( {a - c} \right)^{2} ,\;w^{CV} - w^{NV} = - 0.0406\left( {a - c} \right)$$
$$p^{CV} - p^{NV} = - 0.0547\left( {a - c} \right),\;CS^{CV} - CS^{NV} = 0.0369\left( {a - c} \right)^{2}$$
$$SW^{CV} - SW^{NV} = 0.0178\left( {a - c} \right)^{2} .$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fernández-Ruiz, J. Corporate social responsibility in a supply chain and competition from a vertically integrated firm. Int Rev Econ (2021). https://doi.org/10.1007/s12232-020-00363-9

Download citation

Keywords

  • Supply chain
  • Double marginalization problem
  • Corporate social responsibility
  • Bilateral monopoly

JEL Classification

  • D21
  • L12
  • L13
  • L22
  • M14