Characterizing the Diversity of Hawai‘i Sweet Potatoes (Ipomoea batatas [L.] Lam.)

Abstract

Sweet potato (Ipomoea batatas [L.] Lam.) is one of the most important staple crops globally with particular cultural and economic significance in the Hawaiian Islands, yet the extent to which traditional cultivars persist remains unknown. The objective of this study was to elucidate the relationships between traditional Hawaiian sweet potato varieties and cultivars that originated elsewhere in the world. We sought to characterize genetic and phenotypic diversity of sweet potatoes represented in the Hawaiian Islands. To this end, a genetic assignment analysis was conducted on a sample of 77 individuals that consisted of traditional Hawaiian, USDA NPGS accessions, and recent herbarium samples. Additionally, voucher specimens of Hawaiian cultivars from the early twentieth century were assessed for variation in leaf morphology. We identified several inconsistencies within the Hawaiian-named varieties, as identically named varieties turned out to be genetically distinct, and similarly named voucher specimens varied in leaf morphology. Our findings call attention to the value of a set of Hawaiian sweet potatoes as “heirloom.” These genetically distinct traditional cultivars have unique value in local markets and present an opportunity to increase cultivar diversity in the markets and fields, support farmer income and diversified agriculture, all while contributing to reinvigoration of  Hawaiian cultural heritage.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Literature Cited

  1. Abràmoff, M. D., P. J. Magalhães, and S. J. Ram. 2004. Image processing with ImageJ. Biophotonics International 11(7): 36–42.

    Google Scholar 

  2. Athens, J. S., T. M. Rieth, and T. S. Dye. 2014. A paleoenvironmental and archaeological model-based age estimate for the colonization of Hawai‘i. American Antiquity 79(1):144–155.

    Article  Google Scholar 

  3. Barrau, J. 1957. L’énigme de la patate douce en Océanie. Etudes d’Outre-Mer 40:83–87.

    Google Scholar 

  4. Bossart, J. L. and D. P. Prowell. 1998. Genetic estimates of population structure and gene flow: Limitations, lessons and new directions. Trends in Ecology and Evolution 13(5): 202–206. https://doi.org/10.1016/S0169-5347(97)01284-6.

    CAS  Article  PubMed  Google Scholar 

  5. CIP [Centro Internacional de la Papa - International Potato Center]. (n.d.). Sweet potato facts and figures. Retrieved from https://cipotato.org/sweetpotato/sweetpotato-facts-and-figures/.

  6. Chung, H. L. 1923. The sweet potato in Hawaii. Hawaii Agricultural Experiment Station Bulletin 50. Honolulu, Hawaii: United States Department of Agriculture Hawaii Agricultural Experiment Station. http://hdl.handle.net/10125/25538.

  7. Chung-Do, J. J., I. Ho-Lastimosa, S. Keaulana, K. Ho Jr., P. W. Hwang, T. Radovich, L. Albinio, I. Rogerson, L. Keli’iholokai, K. Deitschman, and M. S. Spencer. 2019. Waimānalo pono research hui: A community–academic partnership to promote native Hawaiian wellness through culturally grounded and community-driven research and programming. American Journal of Community Psychology 64(1–2):107–117. https://doi.org/10.1002/ajcp.12355.

    Article  PubMed  Google Scholar 

  8. Coil, J. and P. V. Kirch. 2005. An Ipomoean landscape: Archaeology and the sweet potato in Kahikinui, Maui, Hawaiian Islands. In: The sweet potato in Oceania: A reappraisal, eds. C. Ballard, P. Brown, R. M. Bourke, and T. Harwood, 71–84. Sydney, Australia: University of Sydney.

  9. Danecek, P., A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo, R. E. Handsaker, G. Lunter, G. T. Marth, S. T. Sherry, G. McVean, R. Durbin, and 1000 Genomes Project Analysis Group. 2011. The variant call format and VCFtools. Bioinformatics 27(15): 2156–2158. https://doi.org/10.1093/bioinformatics/btr330.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Ertiro, B. T., V. Ogugo, M. Worku, B. Das, M. Olsen, M. Labuschagne, and K. Semagn. 2015. Comparison of Kompetitive Allele Specific PCR (KASP) and genotyping by sequencing (GBS) for quality control analysis in maize. BMC Genomics 16: 908. https://doi.org/10.1186/s12864-015-2180-2.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Farran, S. 2014. That plant is my ancestor: Dilemmas for intellectual property in developing countries, food security and Pacific Island countries. Queen Mary Journal of Intellectual Property 4(4): 277–296. https://doi.org/10.4337/qmjip.2014.04.02.

    Article  Google Scholar 

  12. Feng, J. Y., M. Li, S. Zhao, C. Zhang, S. T. Yang, S. Qiao, W. F. Tan, H. J. Qu, D. Y. Wang, and Z. G. Pu. 2018. Analysis of evolution and genetic diversity of sweetpotato and its related different polyploidy wild species I. trifida using RAD-seq. BMC Plant Biology 18: 181. https://doi.org/10.1186/s12870-018-1399-x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Foll, M. and O. Gaggiotti. 2006. Identifying the environmental factors that determine the genetic structure of populations. Genetics 174(2): 875–891. https://doi.org/10.1534/genetics.106.059451.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Fornander, A. 1919. He Moolelo no ka Mahiai. In: Fornander collection of Hawaiian antiquities and folk-lore, tran. T. G. Thrum, 161–171. Honolulu, HI: Bishop Museum Press.

  15. Frichot, E., S. D. Schoville, G. Bouchard, and O. François. 2013. Testing for associations between loci and environmental gradients using latent factor mixed models. Molecular Biology and Evolution 30(7): 1687–1699. https://doi.org/10.1093/molbev/mst063.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Garrison, E. and G. T. Marth. 2012. Haplotype-based variant detection from short-read sequencing. arXiv preprint arXiv:1207.3907. https://arxiv.org/pdf/1207.3907.pdf.

  17. Graham, S. W. and R. G. Olmstead. 2000. Utility of 17 chloroplast genes for inferring the phylogeny of the basal angiosperms. American Journal of Botany 87(11): 1712–1730. https://doi.org/10.2307/2656749.

    CAS  Article  PubMed  Google Scholar 

  18. Green, R. C. 2005. Sweet potato transfers in Polynesian prehistory. In: The sweet potato in Oceania: A reappraisal, 43–62. Sydney, Australia: University of Sydney.

  19. Gugganig, M. 2017. The ethics of patenting and genetically engineering the relative Hāloa. Ethnos 82(1): 44–67. https://doi.org/10.1080/00141844.2015.1028564.

    Article  Google Scholar 

  20. Guindon, S., J. F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk, and O. Gascuel. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology 59(3): 307–321. https://doi.org/10.1093/sysbio/syq010.

    CAS  Article  PubMed  Google Scholar 

  21. Gupta, S., D. M. Rosenthal, J. R. Stinchcombe, and R. S. Baucom. 2020. The remarkable morphological diversity of leaf shape in sweet potato (Ipomoea batatas): The influence of genetics, environment, and GxE. New Phytologist 225(5):2183–2195.  https://doi.org/10.1111/nph.16286.

  22. Handy, E. S. C. 1940. The Hawaiian planter, Vol. I: His plants, methods and areas of cultivation. Bernice P. Bishop Museum Bulletin 161. Honolulu, Hawaii: Bishop Museum Press.

  23. Handy, E. G. Handy, and M. K. Pukui. 1991. Native planters in old Hawaii: Their life, lore, and environment. Revised edition. Honolulu, Hawaii: Bishop Museum Press.

  24. Helmkampf, M., T. K. Wolfgruber, M. R. Bellinger, R. Paudel, M. B. Kantar, S. C. Miyasaka, H. L. Kimball, A. Brown, A. Veillet, A. Read, and M. Shintaku. 2017. Phylogenetic relationships, breeding implications, and cultivation history of Hawaiian taro (Colocasia esculenta) through genome-wide SNP genotyping. Journal of Heredity 109(3): 272–282. https://doi.org/10.1093/jhered/esx070.

    CAS  Article  PubMed Central  Google Scholar 

  25. Huamán, Z. 1991. Descriptors for sweet potato. CIP, AVRDC, IBPGR, Rome, Italy.

  26. Huelsenbeck, J. P. and F. Ronquist 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8): 754–755.

    CAS  Article  Google Scholar 

  27. Ioannidis, A. G., J. Blanco-Portillo, K. Sandoval, E. Hagelberg, J. F. Miquel-Poblete, J. V. Moreno-Mayar, J. E. Rodríguez-Rodríguez, C. D. Quinto-Cortés, K. Auckland, T. Parks, K. Robson, A. V. S. Hill, M. C. Avila-Arcos, A. Sockell, J. R. Homburger, G. L. Wojcik, K. C. Barnes, L. Herrera, S. Berríos, M. Acuña, E. Llop, C. Eng, S. Hunsman, E. G. Burchard, C. R. Gignoux, L. Cifuentes, R. A. Verdugo, M. Moraga, A. J. Mentzer, C. D. Bustamante, and A. Moreno-Estrada. 2020. Native American gene flow into Polynesia predating Easter Island settlement. Nature 583: 572–577. https://doi.org/10.1038/s41586-020-2487-2.

    CAS  Article  PubMed  Google Scholar 

  28. Jackson, D. M., H. F. Harrison, R. L. Jarret, and P. A. Wadl. 2020. Phenotypic variation in leaf morphology of the USDA, ARS sweetpotato (Ipomoea batatas) germplasm collection. HortScience 55(4): 465–475. https://doi.org/10.21273/HORTSCI14703-19.

    Article  Google Scholar 

  29. Jansen, R. K., L. A. Raubeson, J. L. Boore, C. W. dePamphilis, T. W. Chumley, R. C. Haberle, S. K. Wyman, A. J. Alverson, R. Peery, S. J. Herman, H. M. Fourcade, J. V. Kuehl, J. R. McNeal, J. Leebens-Mack, and L. Cui. 2005. Methods for obtaining and analyzing whole chloroplast genome sequences. Methods in enzymology 395: 348–384. https://doi.org/10.1016/S0076-6879(05)95020-9.

    CAS  Article  PubMed  Google Scholar 

  30. Jombart, T. 2008. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24(11): 1403–1405. https://doi.org/10.1093/bioinformatics/btn129.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Jombart, T. and I. Ahmed. 2011. adegenet 1.3–1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27(21): 3070–3071. https://doi.org/10.1093/bioinformatics/btr521.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Kaaiakamanu, D. M. and J. K. Akina. 1922. Hawaiian herbs of medicinal value. Honolulu: Territory of Hawaii Board of Health.

    Google Scholar 

  33. Kaaie, J. W. K. 1860. Inoa a na Uala. Ka Hae Hawaii [Hawaii] 4(52): 205. http://www.nupepa.org/gsdl2.5/cgi-bin/nupepa?e=d-0nupepa%2D%2D00-0-0%2D%2D010%2D%2D-4%2D%2D%2D%2D-text%2D%2D-0-1l%2D%2D1haw-Zz-1%2D%2D-20-about%2D%2D-0003-1-0000utfZz-8-00&cl=CL2.16&d=HASHd6a2ac7ad98fb43da966a2.3&l=en.

  34. Kagawa-Viviani, A. 2016. Untangling ‘uala: Toward re-diversifying and re-placing sweet potato in the Hawaiian landscape. Report submitted to E Kūpaku Ka ‘Āina- The Hawai‘i Land Restoration Institute, Wailuku, Hawai‘i.

  35. Kagawa-Viviani, P. Levin, E. Johnston, J. Ooka, J. Baker, M. Kantar, and N. K. Lincoln. 2018. I Ke Ēwe ‘Āina o Ke Kupuna: Hawaiian ancestral crops in perspective. Sustainability 10(12): 4607. https://www.mdpi.com/2071-1050/10/12/4607/pdf.

    Article  Google Scholar 

  36. Keaulana, S., J. J. Chung-Do, I. Ho-Lastimosa, P. W. Hwang, K. Ho, T. Radovich, M. Spencer, L. Albinio, I. Rogerson, L. Keli’iholokai, and K. Deitschman. 2019. Waimānalo pono research hui: Establishing protocols and rules of engagement to promote community-driven and culturally-grounded research with a native Hawaiian community. The British Journal of Social Work 49(4): 1023–1040. https://doi.org/10.1093/bjsw/bcz012.

    Article  Google Scholar 

  37. Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, A. Cooper, S. Markowitz, C. Duran, and T. Thierer. 2012. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12): 1647–1649. https://doi.org/10.1093/bioinformatics/bts199.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kelly, M. 1983. Na mala o Kona: Gardens of Kona. Bernice P. Bishop Museum Department of Anthropology Report 83-2. Honolulu: Bernice P. Bishop Museum.

    Google Scholar 

  39. Kirch, P. V., J. Holson, and A. Baer. 2009. Intensive dryland agriculture in Kaupō, Maui, Hawaiian Islands. Asian Perspectives 48(2): 265–290. https://doi.org/10.1353/asi.2009.0006.

    Article  Google Scholar 

  40. Ladefoged, T. N., M. W. Graves, and J. H. Coil. 2005. The introduction of sweet potato in Polynesia: Early remains in Hawai‘i. Journal of the Polynesian Society 114(4): 359–374.

    Google Scholar 

  41. Lee, D. W. and J. H. Richards. 1991. Heteroblastic development in vines. In: The biology of vines, eds. F. E. Putz and H. A. Mooney, 205–243. Cambridge, United Kingdom: Cambridge University Press.

  42. Loveless, M. D. and J. L. Hamrick. 1984. Ecological determinants of genetic structure in plant populations. Annual Review of Ecology and Systematics 15(1): 65–95. https://doi.org/10.1146/annurev.es.15.110184.000433.

    Article  Google Scholar 

  43. Muñoz-Rodríguez, P., T. Carruthers, J. R. I. Wood, B. R. M. Williams, K. Weitemier, B. Kronmiller, D. Ellis, N. L. Anglin, L. Longway, S. A. Harris, M. D. Rausher, S. Kelly, A. Liston, and R. W. Scotland. 2018. Reconciling conflicting phylogenies in the origin of sweet potato and dispersal to Polynesia. Current Biology 28(8): 1246–1256.e12. https://doi.org/10.1016/j.cub.2018.03.020.

    CAS  Article  PubMed  Google Scholar 

  44. Nagata, K. M. 1985. Early plant introductions in Hawai‘i. Hawaiian Journal of History 19: 35–61.

    Google Scholar 

  45. Napihelua, M. L. 1857, March 4. Uala! Uala! Ka Hae Hawaii [Hawaii] 2(1): 1.

  46. Oberholtzer, L., C. Dimitri, and C. Greene. 2005. Price premiums hold on as U.S. organic produce market expands. Washington, D.C.: United States Department of Agriculture, Economic Research Service, VGS-308-01, 1–22. https://naldc.nal.usda.gov/download/41261/PDF.

  47. Platt, A., M. Horton, Y. S. Huang, Y. Li, A. E. Anastasio, N. W. Mulyati, J. Ågren, O. Bossdorf, D. Byers, K. Donohue, and M. Dunning. 2010. The scale of population structure in Arabidopsis thaliana. PLoS Genetics 6(2): e1000843. https://doi.org/10.1371/journal.pgen.1000843.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Poole, C. F. 1952. Seedling improvement in sweet potato. Technical Bulletin No. 17. University of Hawaii Agricultural Experiment Station, Honolulu, Hawaii.

  49. ———. 1955a. Sweet potato genetic studies. Technical Bulletin No. 27. Hawaii Agricultural Experiment Station, College of Tropical Agriculture, Honolulu, Hawaii. http://hdl.handle.net/10125/40997.

  50. ———. 1955b. The sweet potato in Hawaii. Circular 45. Hawaii Agricultural Experiment Station, College of Tropical Agriculture, University of Hawaii. http://hdl.handle.net/10125/53712.

  51. ———. 1959. Improvement in yield of sweet potato clones. Proceedings of the American Society for Horticultural Science 73: 445-452.

    Google Scholar 

  52. Pukui, M. K. 1983. ‘Ōlelo No‘eau: Hawaiian proverbs and poetical sayings. Honolulu: Bishop Museum Press.

    Google Scholar 

  53. Randell, R. A. and C. W. Morden. 1999. Hawaiian plant DNA library II: Endemic, indigenous, and introduced species. Pacific Science 53: 401–417. http://hdl.handle.net/10125/712.

    Google Scholar 

  54. Rooke, T. C. B. 1855. Report on the sweet potato (Convolvulus batata). In: Transactions of the Royal Hawaiian Agricultural Society 38–43.

  55. Roselius, K., W. Stephan, and T. Städler. 2005. The relationship of nucleotide polymorphism, recombination rate and selection in wild tomato species. Genetics 171(2): 753–763. https://doi.org/10.1534/2Fgenetics.105.043877.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Rosero, A., L. Granda, J.-L. Pérez, D. Rosero, W. Burgos-Paz, R. Martínez, J. Morelo, I. Pastrana, E. Burbano, and A. Morales. 2019. Morphometric and colourimetric tools to dissect morphological diversity: An application in sweet potato [Ipomoea batatas (L.) Lam.]. Genetic Resources and Crop Evolution 66: 1257–1278. https://doi.org/10.1007/s10722-019-00781-x.

    CAS  Article  Google Scholar 

  57. Roullier, C., G. Rossel, D. Tay, D. Mckey, and V. Lebot. 2011. Combining chloroplast and nuclear microsatellites to investigate origin and dispersal of New World sweet potato landraces. Molecular Ecology 20(19): 3963–3977. https://doi.org/10.1111/j.1365-294X.2011.05229.x.

    CAS  Article  PubMed  Google Scholar 

  58. Roullier, L. Benoit, D. B. McKey, and V. Lebot. 2013. Historical collections reveal patterns of diffusion of sweet potato in Oceania obscured by modern plant movements and recombination. Proceedings of the National Academy of Sciences 110(6): 2205–2210. https://doi.org/10.1073/pnas.1211049110.

    CAS  Article  Google Scholar 

  59. Scaglion, R. 2005. Kumara in the Ecuadorian Gulf of Guayaquil? In: The sweet potato in Oceania: A reappraisal, 35–42. Sydney: University of Sydney.

    Google Scholar 

  60. Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9(7): 671–675. https://doi.org/10.1038/nmeth.2089.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. St. Onge, K. R., T. Källman, T. Slotte, M. Lascoux, and A. E. Palme. 2011. Contrasting demographic history and population structure in Capsella rubella and Capsella grandiflora, two closely related species with different mating systems. Molecular Ecology 20(16): 3306–3320. https://doi.org/10.1111/j.1365-294X.2011.05189.x.

    Article  PubMed  Google Scholar 

  62. Taitano, N., V. Bernau, L. Jardón-Barbolla, B. Leckie, M. Mazourek, K. Mercer, L. McHale, A. Michel, D. Baumler, M. Kantar, and E. van der Knaap. 2018. Genome-wide genotyping of a novel Mexican Chile Pepper collection illuminates the history of landrace differentiation after Capsicum annuum L. domestication. Evolutionary Applications 12(1): 78–92. https://doi.org/10.1111/eva.12651.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Takahashi, M. 1937. Self and cross fertility and sterility studies of the sweet potato (Ipomoea Batatas [L.] Poir). Master’s thesis, University of Hawa‘i at Mānoa, Honolulu, Hawaii.

  64. Tavaré, S. 1986. Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences 17: 57–86.

    Google Scholar 

  65. Vitousek, P. M., T. N. Ladefoged, P. V. Kirch, A. S. Hartshorn, M. W. Graves, S. C. Hotchkiss, S. Tuljapurkar, and O. A. Chadwick. 2004. Soils, agriculture, and society in precontact Hawai’i. Science 304(5677):1665–1669. https://doi.org/10.1126/science.1099619.

    CAS  Article  PubMed  Google Scholar 

  66. Wang, X. P., X. Cheng, and Z. Yun-Jiao. 2019. The complete chloroplast genome of a wild sweet potato, Ipomoea trifida (Kunth) G. Don. Mitochondrial DNA Part B 4(1): 2063–2064. https://doi.org/10.1080/23802359.2019.1574672.

    Article  Google Scholar 

  67. Yan, L., X. Lai, X. Li, C. Wei, X. Tan, and Y. Zhang. 2015. Analyses of the complete genome and gene expression of chloroplast of sweet potato [Ipomoea batata]. PLoS ONE 10(4): e0124083. https://doi.org/10.1371/journal.pone.0124083.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Yang, J., M. H. Moeinzadeh, H. Kuhl, J. Helmuth, P. Xiao, S. Haas, G. Liu, J. Zheng, Z. Sun, W. Fan, G. Deng, H. Wang, F. Hu, S. Zhao, A. R. Fernie, S. Boerno, B. Timmermann, P. Zhang, and M. Vingron. 2017. Haplotype-resolved sweet potato genome traces back its hexaploidization history. Nature Plants 3: 696–703. https://doi.org/10.1038/s41477-017-0002-z.

    CAS  Article  PubMed  Google Scholar 

  69. Yen, D. E. 1963. The New Zealand Kumara or sweet potato. Economic Botany 17: 31–45. https://doi.org/10.1007/BF02985351.

    Article  Google Scholar 

  70. ———. 1974. The sweet potato and Oceania: An essay in ethnobotany. Honolulu: Bishop Museum Press.

    Google Scholar 

  71. Zheng, X., D. Levine, J. Shen, S. M. Gogarten, C. Laurie, and B. S. Weir. 2012. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28(24): 3326–3328. https://doi.org/10.1093/bioinformatics/bts606.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Jay Bost, Tia Silvasy, and Sarah Moore. We would like to extend our gratitude to the American Society of Plant Biologists National Summer Undergraduate Research Fellowship for supporting EW. AKV would like to acknowledge Penny Levin for mentoring, support, and encouragement to keep on the ‘uala. We also thank those that maintain accessions and who made plant material available—various gardens and growers, herbaria, and the Waimanalo Agricultural Experiment Station. Last but not least, we acknowledge the early motivation for this effort—Anakala Jerry Konanui’s persistent request to untangle Hawaiian ‘uala with molecular tools. Pīpī holo ka‘ao.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael Kantar.

Supplementary Information

ESM 1

(DOCX 39.7 kb)

ESM 2

(PDF 108 kb)

ESM 3

(DOCX 40.7 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Winnicki, E., Kagawa-Viviani, A., Perez, K. et al. Characterizing the Diversity of Hawai‘i Sweet Potatoes (Ipomoea batatas [L.] Lam.). Econ Bot 75, 48–62 (2021). https://doi.org/10.1007/s12231-020-09511-2

Download citation

Keywords

  • Genetic assignment
  • Leaf shape
  • Ethnographic records
  • Botanical garden
  • Herbarium
  • Heirloom