Interaction of Fertilizer Phosphorus Rate and Placement/Timing on Potatoes

Abstract

Field experiments were conducted in Wisconsin for 3 years on irrigated sandy and silt loam soils in an attempt to better calibrate potato phosphorus (P) needs and to determine which of several P fertilizer placements/timings were best for crop yield and quality or could improve P fertilizer use efficiency. In 2 of 3 years at both locations, positive yield and tuber quality responses were seen with phosphate rates ranging from 45 to 200 kg P2O5 ha−1 on the sand and 124 kg > 224 kg P2O5 ha−1 on the silt loam. Row placement improved P fertilizer use efficiency on the sand but not on the silt loam. In-season P applications improved plant P concentrations, but did not always result in tuber yield or quality responses, although this method may be effective as a rescue treatment. Early season (~35 days after emergence, dae) petiole P analysis was useful for predicting P sufficiency with a critical level of 0.35% P. Later sampling (> 50 dae) did not adequately separate responsive from non-responsive treatments. Based on this research, row-placed P at modest rates (about 100 kg P2O5 ha−1) is recommended on sandy soils, whereas on the medium-textured soil all placement/timings performed similarly except the in-season treatment. A higher rate was needed (~160 kg P2O5 ha−1) on this soil to optimize yield and quality.

Resumen

Se condujeron experimentos de campo en Wisconsin por tres años en suelos arenosos y franco limosos, en un intento para calibrar mejor las necesidades de fosforo (P) en papa y para determinar cuál ubicación/calendario de varios fertilizantes fosforados fueron los mejores para el rendimiento y calidad del cultivo o pudiera mejorar la eficiencia en el uso del fertilizante de fosforo. En 2 de los tres años en ambas localidades, las respuestas al rendimiento positivo y la calidad del tubérculo se observaron con una evaluación de los niveles de fosforo variando desde 45 a 200 kg P2O5 ha-1 en la arena, a 124 kg > 224 kg P2O5 ha-1 en el franco limoso. La colocación en el surco mejoró la eficiencia en el uso del fertilizante fosforado en la arena pero no en el franco limoso. Las aplicaciones durante el ciclo mejoraron las concentraciones del P en la planta, pero no siempre resultó en respuestas en rendimiento y calidad de tubérculo, aunque este método pudiera ser efectivo como un tratamiento de rescate. El análisis del P del pecíolo temprano en el ciclo (~35 días después de la emergencia, dae) fue útil para predecir la suficiencia de P con un nivel crítico de 0.35% de P. Un muestreo posterior (>50 dae) no separó adecuadamente los tratamientos que respondieron de los que no respondieron. Con base a esta investigación, la aplicación de P en el surco a niveles modestos (cerca de 100 kg P2O5 ha-1) se recomienda en suelos arenosos, mientras que en suelos de textura media todas las ubicaciones/calendario se comportaron de manera similar, con excepción del tratamiento dentro del ciclo. Se necesitó de un nivel más alto (~160 kg P2O5 ha-1) en este suelo para optimizar el rendimiento y la calidad.

This is a preview of subscription content, log in to check access.

References

  1. Allison, M.F., J.H. Fowler, and E.J. Allen. 2001. Effects of soil- and foliar-applied phosphorus fertilizers on the potato (Solanum tuberosum L.) crop. Journal of Agricultural Science-Cambridge 137: 379–395.

  2. Baerug, R., and K. Steenberg. 1971. Influence of placement method and water supply on the uptake of phosphorus by early potatoes. Potato Research 14: 282–291.

    Google Scholar 

  3. Barben, S.A., B.G. Hopkins, V.D. Jolley, B.L. Webb, and B.A. Nichols. 2010. Phosphorus and zinc interactions in chelator-buffered solution grown russet Burbank. Journal of Plant Nutrition 33: 587–601.

    CAS  Google Scholar 

  4. Benepal, P.S. 1967. Correlations among applied nitrogen, phosphorus, and potassium and responses of the potato plant. American Potato Journal 44: 75–86.

    Google Scholar 

  5. Bishop, R.F., C.R. MacEachern, and D.C. MacKay. 1967. The relation of soil test values to fertilizer responses by the potato. IV. Available phosphorus and phosphatic fertilizer requirements. Canadian Journal of Soil Science 47: 175–185.

    Google Scholar 

  6. Boawn, L.C., and G.E. Leggett. 1964. Phosphorus and zinc concentrations in Russet Burbank potato tissues in relation to development of zinc deficiency symptoms. Soil Science Society of American Proceedings 28: 229–232.

    CAS  Google Scholar 

  7. Boyd, D.A., and W. Dermott. 1967. Fertiliser requirements of potatoes in relation to kind of soil and soil analysis. Journal of Science, Food and Agriculture 18: 85–89.

    CAS  Google Scholar 

  8. Bundy, L.G., H. Tunney, and A.D. Halverson. 2005. Agronomic aspects of phosphorus management. J.T. Sim and A.N. Sharpley (editors) Phosphorus: Agriculture and the Environment. Agronomy Monograph no. 46. pages 685–727. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, Wisconsin.

  9. Carpenter, P.N. 1963. Mineral accumulation in potato plants as affected by fertilizer application and potato variety. Maine Agricultural Experiment Station Bulletin: 610.

  10. Fernandez, A.M., and R.F. Soratto. 2016. Phosphorus fertilizer rate for fresh market potato cultivars grown in tropical soil with low phosphorus availability. American Journal of Potato Research 93: 404–414.

    Google Scholar 

  11. Fixen, P.E., and T.W. Bruulsema. 2014. Potato management challenges created by phosphorus chemistry and plant roots. American Journal of Potato Research 91: 121–131.

    CAS  Google Scholar 

  12. Freeman, K.L., P.R. Franz, and R.W. de Jong. 1998. Effect of phosphorus on the yield, quality and petiolar phosphorus concentrations of potatoes (cv. Russet Burbank and Kennebec) grown in the krasnozen and duplex soils of Victoria. Australian Journal of Experimental Agriculture 38: 83–93.

    Google Scholar 

  13. Hammes, J.K. 1961-1962. Influence of fertilizer placement on the cumulative uptake of fertilizer phosphorus by Early Gem potatoes. University of Wisconsin Department of soil science report. (unpublished research reports).

  14. Hegney, M.A., and I.R. McPharlin. 1999. Broadcasting phosphate fertilizer produces higher yields of potatoes (Solanum tuberosum L.) than band-placement on coastal soils. Australian Journal of Experimental Agriculture 39: 495–503.

  15. Hegney, M.A., I.R. McPharlin, and R.C. Jeffery. 2000. Using soil testing and petiole analysis to determine phosphorus fertilizer requirements of potatoes (Solanum tuberosum L. cv. Delaware) in the Manjimup-Pemberton region of Western Australia. Australian Journal of Experimental Agriculture 40: 107–117.

  16. Hopkins, B.G., J.W. Ellsworth, T.R. Bowen, A.G. Cook, S.C. Stephens, V.D. Jolley, A.K. Shiffler, and D. Eggett. 2010a. Phosphorus fertilizer timing for Russet Burbank potato grown in calcareous soil. Journal of Plant Nutrition 33: 529–540.

    CAS  Google Scholar 

  17. Hopkins, B.G., J.W. Ellsworth, A.K. Shiffler, T.R. Bowen, and A.G. Cook. 2010b. Pre-plant versus in-season application of phosphorus fertilizer for Russet Burbank potato grown in calcareous soil. Journal of Plant Nutrition 33: 1026–1039.

    CAS  Google Scholar 

  18. Hopkins, B.G., D.B. Horneck, and A.E. MacGuidwin. 2014. Improving phosphorus use efficiency through rhizosphere modification and extension. American Journal of Potato Research 91: 161–174.

    CAS  Google Scholar 

  19. Howlett, F.S. 1968. Interpretation a of leaf analysis: Vegetable crops. Department of Horticulture: Ohio Agricultural and Research Development Center, Ohio State University, Wooster, Ohio.

    Google Scholar 

  20. Huang, C.L., and E.E. Schulte. 1985. Digestion of plant tissue for analysis by ICP emission spectroscopy. Communications in Soil Science and Plant Analysis 16: 943–958.

    CAS  Google Scholar 

  21. Iwama, K. 2008. Physiology of the potato: New insights into root system and repercussions for crop management. Potato Research 51: 333–353.

    Google Scholar 

  22. Jackson, T.L., and G.E. Carter. 1976. Nutrient uptake by Russet Burbank potatoes as influenced by fertilization. Agronomy Journal 68: 9–12.

    CAS  Google Scholar 

  23. Jenkins, P.D., and H. Ahi. 2000. Phosphate supply and progeny tuber numbers in potato crops. Annals of Applied Biology 136:41–46.

  24. Jenkins, P.D., and H. Ali. 1999. Growth of potato cultivars in response to application of phosphate fertilizer. Annals of Applied Biology 135: 431–438.

    Google Scholar 

  25. Jones, J.B., Jr., B. Wolf, and H.A. Mills. 1991. Plant analysis handbook. Athens, Georgia: Micro-Macro Publishing, Inc..

    Google Scholar 

  26. Kelling, K.A., R.P. Wolkowski, J.G. Iyer, R.B. Corey, and W.R. Stevenson. 1992. Potato responses to phosphorus application and using petiole analysis in determining P status. Proceedings of the Wisconsin Annual Potato Meetings 5: 39–50.

    Google Scholar 

  27. Khiari, L., L.E. Parent, A. Pellerin, A.R.A. Alimi, C. Tremblay, R.R. Simard, and J. Fortin. 2000. An Agri-environmental phosphorus saturation index for acid coarse-textured soils. Journal of Environmental Quality 29: 1561–1567.

    CAS  Google Scholar 

  28. Kingston, B.D., and R.W. Jones. 1980. Response of potatoes to phosphorus rate and placement on the Texas rolling plains. In Texas agricultural Research Station report PR3680. College Station: Texas.

    Google Scholar 

  29. Kleinschmidt, G.D., G.E. Kleinkopf, D.T. Westermann, and J.C. Zalewski. 1984. Specific gravity of potatoes. University of Idaho Current Information Series no. 609. Moscow, Idaho.

  30. Kovar, J.L., and S.A. Barber. 1987. Placing phosphorus and potassium for greatest recovery. Journal of Fertilizer Issues 4: 1–6.

    Google Scholar 

  31. Kunkel, R., N. Holstad, and T.S. Russell. 1973. Mineral element content of potato plants and tubers vs. yields. American Potato Journal 50: 275–282.

    CAS  Google Scholar 

  32. Laboski, C.A.M., and K.A. Kelling. 2007. Influence of fertilizer management and soil fertility on tuber specific gravity: A review. American Journal of Potato Research 84: 283–290.

    CAS  Google Scholar 

  33. Laboski, C.A.M., and J.B. Peters. 2012. Nutrient application guidelines for field, vegetable and fruit crops in Wisconsin. In University of Wisconsin Extension Publication A2809. Madison: Wisconsin.

    Google Scholar 

  34. Lesczynski, D.B., and C.B. Tanner. 1976. Seasonal variation of root distribution of irrigated, field-grown Russet Burbank potato. American Potato Journal 53: 69–78.

    Google Scholar 

  35. Liegel, E.A., C.R. Simson, P.E. Fixen, R.E. Rand, and G.G. Weis. 1981. Potato responses to phosphorus and potassium and recommendations for P-K fertilization. In 81EL-1–14. University of Wisconsin Potato Manual: Department of Horticulture, University of Wisconsin-Madison.

    Google Scholar 

  36. MacKay, D.C., J.M. Carefoot, and P. Entz. 1988. Detection and correction of midseason P deficiency in irrigated potatoes. Canadian Journal of Plant Science 68: 523–534.

    CAS  Google Scholar 

  37. MacKay, D.C., P. Entz, J.M. Carefoot, and S. Dubetz. 1989. Comparison of critical nutrient concentrations with DRIS for assessing nutrient deficiencies of potatoes on irrigated Chernozemic soil. Canadian Journal of Plant Science 69: 601–609.

    CAS  Google Scholar 

  38. Maier, N.A., K.A. Potocky-Pacay, and C.M.J. Williams. 1989. Comparison of the use of total phosphorus concentrations and acetic acid soluble phosphorus concentration in petioles for assessing the phosphorus status of potato crops. Australian Journal of Experimental Agriculture 29: 433–438.

    Google Scholar 

  39. Mohr, R.M., and D.J. Tomasiewicz. 2011. Effect of phosphorus fertilizer rate on irrigated Russet Burbank potato. Communications in Soil Science and Plant Analysis 42: 2284–2298.

    CAS  Google Scholar 

  40. Moorby, J. 1978. The physiology of growth and tuber yield. P.M. Harris (editor) The potato crop: The scientific basis for improvement. Pages 153–194. Chapman and hall ltd., London.

  41. National Oceanic and Atmospheric Administration (NOAA). 1992-1994. Climatological data: Wisconsin. Washington, DC: NOAA.

    Google Scholar 

  42. Nelson, W.L., and A. Hawkins. 1947. Response of Irish potatoes to phosphorus and potassium on soils having different levels of these nutrients in Maine and North Carolina. Journal of the American Society of Agronomy 39: 1053–1067.

    CAS  Google Scholar 

  43. Opena, G.B., and G.A. Porter. 1999. Soil management and supplemental irrigation effects on potato: II. Root growth. Agronomy Journal 91: 426–431.

    Google Scholar 

  44. Parry, R. 1998. Agricultural phosphorus and water quality: A U.S. Environmental Protection Agency perspective. Journal of Environmental Quality 27: 258–261.

    CAS  Google Scholar 

  45. Peterson, L.A., G.G. Weis, and L.M. Walsh. 1971. Potato responses to varying levels of soil test P and K. Communications in Soil Science and Plant Analysis 2: 267–274.

    CAS  Google Scholar 

  46. Pursglove, J.D., and F.E. Sanders. 1981. The growth and phosphorus economy of the early potato (Solanum tuberosum). Communications in Soil Science and Plant Analysis 12: 1105–1121.

  47. Ramaekers, L., R. Remans, I.M. Raoc, M.W. Blair, and J. Vanderleyden. 2010. Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crop Research 117: 169–176.

    Google Scholar 

  48. Roberts, S., and A.I. Dow. 1982. Critical nutrient ranges for petiole phosphorus levels of sprinkler-irrigated Russet Burbank potatoes. Agronomy Journal 74: 583–585.

    CAS  Google Scholar 

  49. Roberts, S., A.I. Dow, and T.A. Cline. 1984. Slow release nitrogen evaluations and phosphorus and potassium requirements for potatoes on sandy soil. In Washington State University research bulletin XBO943. Pullman: Washington.

    Google Scholar 

  50. Rosen, C.J., and P.M. Bierman. 2008. Potato yield and tuber set as affected by phosphorus fertilization. American Journal of Potato Research 85: 110–120.

    CAS  Google Scholar 

  51. Rosen, C.J., M. McNearney, and P. Bierman. 2007-2009. Evaluation of specialty phosphorus fertilizer formulations for potatoes. University of Minnesota, Department of Soil, water and climate. (unpublished research reports).

  52. Rosen, C.J., K.A. Kelling, J.C. Stark, and G.A. Porter. 2014. Optimizing phosphorus fertilizer management in potato production. American Journal of Potato Research 91: 145–160.

    CAS  Google Scholar 

  53. Ruark, M.D., K.A. Kelling, and L.W. Good. 2014. Environmental concerns of phosphorus management in potato production. American Journal of Potato Production 91: 132–144.

    CAS  Google Scholar 

  54. Sanderson, J.B., J.A. MacLeod, B. Douglas, R. Coffin, and T. Bruulsema. 2003. Phosphorus research on potato in PEI. Acta Horticulturae 619: 409–417.

    Google Scholar 

  55. Schulte, E.E., J.B. Peters, and P.R. Hodgson. 1987. Wisconsin procedures for soil testing, plant analysis, and feed and forage analysis. Soil Fertility Series No. 6. Department of Soil Science, University of Wisconsin-Madison.

  56. Schulte, E.E., K.A. Kelling, J.B. Peters, and S.M. Combs. 2000. Plant analyses interpretations used in the revised Wisconsin program. New Horizons in Soil Science No. 7-2000. Department of Soil Science, University of Wisconsin-Madison.

  57. Sharma, U.C., and B.R. Arora. 1987. Effect of nitrogen, phosphorus and potassium application on yield of potato tubers (Solanum tuberosum L.). Journal of Agricultural Science, Cambridge 108: 321–329.

  58. Singh, J.P. 1985. Role of phosphorus and potassium content of leaf in maximizing potato yield. Indian Journal of Agricultural Science 37: 565–566.

    Google Scholar 

  59. Soltanpour, P.N. 1969. Effect of nitrogen, phosphorus and zinc placement on yield and composition of potatoes. Agronomy Journal 61: 288–289.

    CAS  Google Scholar 

  60. Sommerfeldt, T.G., and K.W. Knutson. 1965. Effects of nitrogen and phosphorus on the growth and development of Russet Burbank potatoes grown in southeastern Idaho. American Potato Journal 42: 351–360.

    CAS  Google Scholar 

  61. Soratto, R.P., and A.M. Fernandez. 2016. Phosphorus effects on biomass accumulation and nutrient uptake and removal in two potato cultivars. Agronomy Journal 108: 1225–1236.

    CAS  Google Scholar 

  62. Sparrow, L.A., K.S.R. Chapman, D. Parsley, P.R. Hardman, and B. Cullen. 1992. Responses of potatoes (Solanum tuberosum cv. Russet Burbank) to band-placed and broadcast high cadmium phosphorus fertiliser on heavily cropped Kzasnozems in North-Western Tasmania. Australian Journal of Experimental Agriculture 32: 113–119.

  63. Statistical Analysis System (SAS) Institute. 2017. The SAS system for Windows-Release 9.4. Statistical Analysis Systems Institute, Cary, North Carolina.

  64. Tindall, T.A., D.T. Westermann, and J.C. Stark. 1993. Phosphorus nutrition in Idaho potatoes. Better Crops 77 (1): 23–25.

    Google Scholar 

  65. United States Department of Agriculture (USDA). 1964. Determining solids in potatoes. Agricultural Handbook No. 267. U.S. Government Printing Office, Washington DC.

  66. Westermann, D.T. 1984. Mid-season P fertilization effects on potatoes. Pages 1–9. In proceedings of the 35th northwest fertilizer conference, Pasco, Washington, 17-18 July 1984.

  67. Westermann, D.T. 1992. Lime effects on phosphorus availability in a calcareous soil. Soil Science Society of America Journal 56: 489–494.

    Google Scholar 

  68. Westermann, D.T. 2005. Nutritional requirements of potatoes. American Journal of Potato Research 82: 301–307.

    CAS  Google Scholar 

  69. Westermann, D.T., and G.E. Kleinkopf. 1985. Phosphorus relationships in potato plants. Agronomy Journal 77: 490–494.

    CAS  Google Scholar 

Download references

Acknowledgments

Support for portions of this research was provided by the Wisconsin Potato and Vegetable Growers Association Potato Industry Board, the Wisconsin Fertilizer Research Council, and UW College of Agricultural and Life Sciences, and is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Keith A. Kelling.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kelling, K.A., Wolkowski, R.P., Speth, P.E. et al. Interaction of Fertilizer Phosphorus Rate and Placement/Timing on Potatoes. Am. J. Potato Res. (2020). https://doi.org/10.1007/s12230-020-09784-2

Download citation

Keywords

  • P fertilizer use efficiency
  • Petiole P
  • In-season P applications
  • Leaf analysis