Improving Tuber Yield and Phosphorus Use Efficiency Using Split Phosphorus Application to Potatoes in Inner Mongolia

Abstract

Increasingly, phosphorus (P) fertilizer is being applied in Inner Mongolia of China to overcome the problem of insolubility of phosphorus in calcareous soil and meet the growth demand of potato plants. As a result, phosphorus use efficiency (PUE) in potatoes decreases continually. In this four-year study in sandy soils, drip fertigating potatoes with phosphorus during the growth season improved phosphorus uptake, plant growth, tuber yield, and PUE. Results show that relative to a single phosphorus application, using a split phosphorus application regime through drip irrigation significantly increased the leaf area index (LAI) and phosphorus uptake rate in the mid and late growth stages of potatoes, and enhanced potato yield and PUE. We concluded that split phosphorus application has the potential to benefit sustainable potato production in Inner Mongolia of China.

Resumen

Incrementándose, se esta aplicando fertilización de fosforo (P) en Mongolia Interior, en China, para superar el problema de insolubilidad de fosforo en suelo calcáreo y satisfacer la demanda de crecimiento de las plantas de papa. Como resultado, la eficiencia del uso del fosforo (PUE) en papa disminuye continuamente. En este estudio de cuatro años en suelos arenosos, la fertirrigación por goteo de papas con fosforo durante el ciclo de cultivo mejoró la absorción del fósforo, el crecimiento de la planta, el rendimiento de tubérculo, y la PUE. Los resultados muestran que en relación a una aplicación única de fosforo, utilizando un régimen de aplicación dividida de fosforo a lo largo del riego por goteo, incrementó significativamente el índice de área foliar (LAI) y el nivel de absorción del fosforo en las etapas intermedia y tardía del crecimiento de las papas, y aumentó el rendimiento y la PUE. Concluimos que la aplicación dividida de fosforo tiene el potencial para beneficio de la producción sustentable de la producción de papa de Mongolia Interior en China.

This is a preview of subscription content, log in to check access.

References

  1. Bao, S. 2008. Soil agrochemical test. Beijing: Chinese Agriculture Press.

    Google Scholar 

  2. Chen, Y., M. Fan, W. Kang, and Y. Qin. 2012. Evaluation and present situation of fertilization for potato in hilly country of Yinshan in Inner Mongolia. Soil Ferti Sci China (in Chinese)2: 104-108.

  3. Dechassa, N., M.K. Schenk, N. Claassen, and B. Steingrobe. 2003. Phosphorus efficiency of cabbage (Brassica oleraceae L. var. capitata), carrot (Daucus carota L.), and potato (Solanum tuberosum L.). Plant and Soil 250 (2): 215–224.

    CAS  Article  Google Scholar 

  4. Duan, Y., D. Tuo, P. Zhao, and H. Li. 2008. Effect of fertilization in potato in Inner Mongolia and its nutrient use efficiency. Chinese Potato J (in Chinese)22(4): 197-200.

  5. Eissa, M.A. 2019. Efficiency of P fertigation for drip-irrigated potato grown on calcareous sandy soils. Potato Research 62: 97–108.

    CAS  Article  Google Scholar 

  6. Eissa, M.A., M. Nafady, H. Ragheb, and K. Attia. 2010. Management of phosphorus fertigation for drip irrigated wheat under sandy calcareous soils. World J Agri Sci 6 (5): 510–516.

    CAS  Google Scholar 

  7. Fan, M., G. Wang, Z. Li, J. Ao, and R. Wang. 2012. Fertilizations and integrated cultivations for the main crops in Inner Mongolia. Beijing: Chinese Agriculture Press.

    Google Scholar 

  8. Feng, G., M. Yang, Z. Bai, and Q. Huang. 1996. Study on changes in fractions and availability of phosphorus in calcareous soil by 32P tracer method. Acta Pedologica Sinica 33 (3): 301–307.

    CAS  Google Scholar 

  9. Freeman, K.L., P.R. Franz, and R.W. de Jong. 1998. Effect of phosphorus on the yield, quality and petiolar phosphorus concentrations of potatoes (cvv. Russet Burbank and Kennebec) grown in the krasnozem and duplex soils of Victoria. Aust J Exp Agr 38: 83–93.

    Article  Google Scholar 

  10. Hinsinger, P. 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant and Soil 237 (2): 173–195.

    CAS  Article  Google Scholar 

  11. Hopkins, B.G., and J.C. Stark. 2013. Potato response to phosphorus fertilizer using a dicarboxylic acid polymer. Better Crops 97 (3): 7–10.

    Google Scholar 

  12. Hopkins, B.G., J.W. Ellsworth, T.R. Bowen, A.G. Cook, S.C. Stephens, V.D. Jolley, A.K. Shiffler, and D. Eggett. 2010. Phosphorus fertilizer timing for russet Burbank potato grown in calcareous soil. Journal of Plant Nutrition 33 (4): 529–540.

    CAS  Article  Google Scholar 

  13. Iwama, K. 2008. Physiology of the potato: New insights into root system and repercussions for crop management. Potato Research 51: 333–353.

    Article  Google Scholar 

  14. Jenkins, P.D., and H. Ali. 2000. Phosphate supply and progeny tuber numbers in potato crops. The Annals of Applied Biology 136 (1): 41–46.

    Article  Google Scholar 

  15. Jia, L., Y. Qin, Y. Chen, and M. Fan. 2018. Fertigation improves potato production in Inner Mongolia (China). Journal of Crop Improvement 32 (5): 648–656.

    Article  Google Scholar 

  16. Knowles, N.R., and L.O. Knowles. 2006. Manipulating stem number, tuber set, and yield relationships for northern and southern-grown potato seed lots. Crop Science 46 (1): 284–296.

    Article  Google Scholar 

  17. Lindsay, W.L. 2001. Chemical equilibria in soils. Caldwell: The Blackburn Press.

    Google Scholar 

  18. Liu, K., J. Gao, Y. Zhang, R. Liu, and J. Liu. 2003. Study on N, P and K utilization ratio of spring wheat. J Triticeae Crop(in Chinese) 23 (3): 103–106.

    CAS  Google Scholar 

  19. Richardson, A.E., J.M. Barea, A.M. McNeill, and C. Prigent-Combare. 2009. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil 321 (2): 305–339.

    CAS  Article  Google Scholar 

  20. Rosen, C.J., and P.M. Bierman. 2008. Potato yield and tuber set as affected by phosphorus fertilization. American Journal of Potato Research 85 (2): 110–120.

    CAS  Article  Google Scholar 

  21. Smil, V. 2003. Phosphorus in the environment: Natural flows and human interferences. Annu Rev Energ Env 25 (1): 53–88.

    Article  Google Scholar 

  22. Sposito, G. 2008. The chemistry of soils. 2nd ed. New York: Oxford University Press.

    Google Scholar 

  23. Stark, J.C., and S.L. Love. 2003. Tuber quality. In Potato production systems, ed. J.C. Stark and S.L. Love, 329–343. Moscow: University of Idaho Agricultural Communications.

    Google Scholar 

  24. Stark, J.C., and J.C. Ojala. 1989. Comparison of banded ammonium polyphosphate and acid urea phosphate as P sources for potatoes. Hortscience 24 (2): 282–284.

    Google Scholar 

  25. Syers, J.K., A.E. Johnston, and D. Curtin. 2008. Efficiency of soil and fertilizer phosphorus use. Reconciling changing concepts of soil phosphorus behavior with agronomic information. FAO fertilizer and plant nutrition bulletin no. 18. Rome: FAO.

    Google Scholar 

  26. Tanner, C.B., G.G. Weis, and D. Curwen. 1982. Russet Burbank rooting in sandy soils with pans following deep plowing. American Journal of Potato Research 59 (3): 107–112.

    Article  Google Scholar 

  27. Westermann, D.T. 2005. Nutritional requirements of potato. American Journal of Potato Research 82: 301–307.

    CAS  Article  Google Scholar 

  28. Westermann, D.T., and G.E. Kleinkopf. 1985. Phosphorus relationships in potato plants. Agronomy Journal 77 (3): 490–494.

    CAS  Article  Google Scholar 

  29. Yin, F., J. Kang, Z. Huang, and D. Zeng. 2005. Distribution and use efficiency of phosphorus from trickle irrigation fertilizer specific fertigated of trickle irrigated cotton via 32P tracing technique. Acta Agricultural Boreali-occidentalis Sinica 14 (6): 199–204.

    CAS  Google Scholar 

  30. Zhang, F., H. Li, G. Huang, Q. Meng, L. Ma, L. Yuan, F. Wang, W. Zhang, Z. Cui, J. Shen, X. Chen, and R. Jiang. 2011. Integrated soil and plant phosphorus management for crop and environment in China. A review. Plant and Soil 349: 157–167.

    Article  Google Scholar 

  31. Zheng, H., Y. Wang, J. Zhao, X. Shi, Z. Ma, and M. Fan. 2018. Tuber formation as influenced by C/N ratio in potato plants. J Plant Nutri Soil Sci 181: 686–693.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Key R&D Program of China (grant no. 2017YFD0200200, 2018YFD0200801) and the National Natural Science Foundation of China (grant no. 31760356). We thank Dr. Zhong Ma, from The Trumann State University, for revising the English text of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mingshou Fan.

Ethics declarations

Declaration

The experiments comply with the current laws of China in which they were performed.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cui, S., Qin, Y., Yu, J. et al. Improving Tuber Yield and Phosphorus Use Efficiency Using Split Phosphorus Application to Potatoes in Inner Mongolia. Am. J. Potato Res. 97, 318–324 (2020). https://doi.org/10.1007/s12230-020-09783-3

Download citation

Keywords

  • Phosphorus supply times
  • Tuber number
  • Tuber weight
  • Drip fertigation
  • Sandy soil
  • Phosphorus uptake