Skip to main content

Advertisement

Log in

Auxin Modulates Gibberellin-Induced Effects on Growth, Yield, and Raw Product Recovery for Frozen Processing in Potato (Solanum tuberosum L.)

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Tuber shape phenotype is an important determinant of raw product (≥7.6-cm-long French fries) recovery for frozen processing. Tuber length-to-width (L/W) ratios ≥1.8 translate to maximum yield of raw product; however, some cultivars produce tubers with much lower L/W ratios. While gibberellin (GA) can be used to elongate tubers, it also decreases tuber size and can thereby attenuate raw product recovery. We investigated the utility of GA and naphthaleneacetic acid (NAA) combination treatments for modifying tuber set, size, and shape to increase yield of raw product from ‘Payette Russet’ and ‘Alturas’; two late-season frozen-processing cultivars that often produce tubers with undesirably low L/W ratios. Models describing L/W ratio and fry yield by tuber size class were developed to translate total U.S. No. 1 tuber yields (>113 g) into yield of raw product. Increases in the L/W ratios of 113–284-g tubers had a greater effect on recovery of French fries (% fresh wt) than for tubers >284 g. Undersize (<113 g) and oversize (>340 g) tubers yielded 0 and 96% fries, respectively, regardless of L/W ratio. GA applied as a seed treatment effectively hastened emergence and altered tuber shape by increasing the L/W ratios of ‘Alturas’ and ‘Payette Russet’ tubers, enhancing total fry yield for the 113–340-g tubers by 24–46%, depending on concentration and application technique (dip, spray, in-furrow). However, GA also decreased apical dominance and shifted tuber size distribution away from >284-g tubers toward higher yields of <170-g tubers, erasing the gains in fry yield when all size classes (>113 g) were considered. When combined with GA, NAA maintained apical dominance, attenuated the shift in tuber size distribution, had no effect on the GA-induced increase in tuber L/W ratio, and only partly moderated the GA-induced stimulation of plant emergence. Raw product yield from ‘Payette Russet’ increased 12–39% in spray application trials by using NAA to confine the effect of GA to tuber shape and limit the loss of U.S. No. 1 tubers to undersize. Increases in tuber L/W ratio with GA/NAA seed treatments translated to increased yield of fries only when the relative concentrations were adjusted to minimize loss of >284-g tubers and gain in undersize tubers, as dictated by cultivar sensitivity to GA. ‘Alturas’ was less sensitive to GA than ‘Payette Russet’ for shifts in tuber size distribution but not shape, resulting in 17% increase in raw product with GA alone in pre-plant seed spray application studies. GA/NAA combination treatments provide an effective approach to manipulate tuber size distribution and enhance the yield of raw product for frozen processing in cultivars with a rounder tuber shape phenotype.

Resumen

El fenotipo de la forma del tubérculo es un factor determinante importante en la recuperación del producto crudo ((≥7.6 cm de largo para papas a la francesa) para procesamiento en congelado. Las proporciones de largo-ancho del tubérculo (L/W) de ≥1.8 se traducen en un rendimiento máximo del producto crudo; no obstante, algunas variedades producen tubérculos con mucho más bajas proporciones. Mientras que la giberelina (GA) puede usarse para alargar los tubérculos, también disminuye su tamaño y puede, en consecuencia, atenuar la recuperación del producto crudo. Nosotros investigamos la utilidad de los tratamientos de la combinación del GA y del ácido naftalenacético (NAA) para modificar la tuberización, el tamaño y la forma, para aumentar el rendimiento del producto crudo de ‘Payette Russet’ y ‘Alturas’, dos variedades tardías para procesamiento de congelado que con frecuencia producen tubérculos con bajas proporciones L/W indeseables. Se desarrollaron modelos que describían la proporción L/W y rendimiento en fritura por clase de tamaño de tubérculo para traducir rendimientos totales de U.S. 1 (>113 g) a rendimiento de producto crudo. Los aumentos en las proporciones L/W de tubérculos de 113–284 g tuvieron un efecto mayor en la recuperación de papas francesas (% peso fresco) que para tubérculos >284 g. Los tubérculos de pesos más bajos (<113 g) y más altos (>340 g) rindieron 0 y 96% de papas fritas, respectivamente, independientemente de la proporción L/W. El GA aplicado como tratamiento a la semilla apresuró la emergencia y alteró la forma del tubérculo mediante el aumento de las proporciones L/W de tubérculos de “Alturas” y Payette Russet”, mejorando el rendimiento total de freído para los tubérculos de 113–340 g en un 24–46%, dependiendo de la concentración y la técnica de aplicación (inmersión, aspersión, en el surco). No obstante, el GA también disminuyó la dominancia apical y cambió la distribución del tamaño del tubérculo lejos de >284 g hacia rendimientos más altos de <170 g, borrando las ganancias en rendimiento de freído cuando se consideraron todas las clases de tamaño (>113 g). Cuando se combinó con GA, el NAA mantuvo la dominancia apical, atenuó el giro de la distribución del tamaño de tubérculo, no tuvo efecto en el aumento inducido por el GA de la proporción L/W de tubérculo, y solo moderó parcialmente la estimulación inducida por el GA de la emergencia de la planta. El rendimiento del producto crudo de “Payette Russet” aumentó del 12 al 39% en los ensayos de aplicación por aspersión mediante el uso del NAA para confinar el efecto del GA a la forma del tubérculo y limitar la pérdida de los tubérculos U.S. 1 a un tamaño menor. Los aumentos de la proporción L/W del tubérculo con tratamientos a la semilla con GA/NAA se tradujeron en un aumento del rendimiento de papas fritas solo cuando las concentraciones relativas se ajustaron para minimizar la pérdida de tubérculos de >284 g y ganar en tubérculos más pequeños, como se dictó por la sensibilidad de la variedad al GA. “Alturas” fue menos sensible al GA que “Payette Russet” respecto a los giros en la distribución del tamaño de los tubérculos, pero no en forma, resultando en un 17% de aumento en producto crudo con GA como producto único, en estudios de aplicación por aspersión en semilla previa a la siembra. Los tratamientos de la combinación GA/NAA, proporcionan un enfoque efectivo para manipular la distribución del tamaño del tubérculo y aumentar el rendimiento del producto crudo para procesamiento de congelado en variedades con fenotipos de forma de tubérculo más redonda.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baritelle, A.L., and G.M. Hyde. 1999. Effect of tuber size on failure properties of potato tissue. Transactions of ASAE 42: 159–161.

    Article  Google Scholar 

  • Behringer, F.J., P.J. Davies, and J.B. Reid. 1990. Genetic analysis of the role of gibberellin in the red light inhibition of stem elongation in etiolated seedlings. Plant Physiology 94: 432–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blauer, J.M., L.O. Knowles, and N.R. Knowles. 2013. Manipulating stem number, tuber set and size distribution in specialty potato cultivars. American Journal of Potato Research 90: 470–496.

    Article  Google Scholar 

  • Bolotova, Y., and P.E. Patterson. 2009. An analysis of contracts in the Idaho processing-potato industry. Journal of Food Research 40: 32–38.

    Google Scholar 

  • Brian, P.W., H.G. Hemming, and M. Radley. 1955. A physiological comparison of gibberellic acid with some auxins. Physiologia Plantarum 8: 899–912.

    Article  CAS  Google Scholar 

  • Brook, R.C. 1996. The physics of potato tuber bruising. In Potato bruising: How and why emphasizing black spot bruise, ed. Roger C. Brook. Haslett, MI: Running Water Publishing.

    Google Scholar 

  • Dean, C.J., L.O. Knowles, and N.R. Knowles. 2018. Efficacy of seed aging and GA treatments for manipulating apical dominance, tuber set and size distribution of cv. Shepody. American Journal of Potato Research. https://doi.org/10.1007/s12230-018-9657-x.

    Article  CAS  Google Scholar 

  • Finch-Savage, W.E., and G. Leubner-Metzger. 2006. Seed dormancy and the control of germination. New Phytologist 171: 501–523.

    Article  CAS  PubMed  Google Scholar 

  • García-Martínez, J.L., and J. Gil. 2002. Light regulation of gibberellin biosynthesis and mode of action. Journal of Plant Growth Regulation 20: 354–368.

    Article  Google Scholar 

  • Gould, W.A. 1999. Frozen French fries and other frozen potato products. In Potato production, processing, and technology, 105–109. Maryland: CTI Publications.

    Chapter  Google Scholar 

  • Hedden, P., and V. Sponsel. 2015. A century of gibberellin research. Journal of Plant Growth Regulation 34: 740–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herman, D.J., L.O. Knowles, and N.R. Knowles. 2016. Differential sensitivity of genetically related potato cultivars to treatments designed to alter apical dominance, tuber set and size distribution. American Journal of Potato Research 93: 331–349.

    Article  Google Scholar 

  • Herman, D.J., L.O. Knowles, and N.R. Knowles. 2017. Heat stress affects carbohydrate metabolism during cold-induced sweetening of potato (Solanum tuberosum L.). Planta 245: 563–582.

    Article  CAS  PubMed  Google Scholar 

  • Holmes, J.C., R.W. Lang, and A.K. Singh. 1970. The effect of five growth regulators on apical dominance in potato seed tubers and on subsequent tuber production. Potato Research 13: 342–352.

    Article  CAS  Google Scholar 

  • Jansky, S.H., and D.M. Thompson. 1990. Expression of hollow heart in segregating tetraploid potato families. American Potato Journal 67: 695–703.

    Article  Google Scholar 

  • Kim, H.S., S.W. Park, J.-H. Jeon, and H. Joung. 2005. Effect of gibberellin on the shape of potato (Solanum tuberosum) microtubers. Journal of Korean Society of Horticultural Science 46: 295–299.

    CAS  Google Scholar 

  • Kloosterman, B., and C. Bachem. 2014. Tuber development. In The potato: Botany, production and uses, ed. M.J. Pavek and R. Navarre, 45–63. Boston: CABI.

    Google Scholar 

  • Knowles, N.R., and L.O. Knowles. 2006. Manipulating stem number, tuber set, and yield relationships for northern- and southern-grown potato seed lots. Crop Science 46: 284–296.

    Article  Google Scholar 

  • Knowles, L.O., and N.R. Knowles. 2016. Optimizing tuber set and size distribution for potato seed (Solanum tuberosum L) expressing varying degrees of apical dominance. Journal of Plant Growth Regulation 35: 574–585.

    Article  CAS  Google Scholar 

  • Knowles, N.R., and M.J. Pavek. 2015. WSU potato cultivar yield and postharvest quality evaluations for 2014. Washington State University Special Report. 116 pp.

  • Knowles, N.R., W.M. Iritani, and L.D. Weller. 1985. Plant growth response from aged potato seed-tubers as affected by meristem selection and NAA. American Potato Journal 62: 289–300.

    Article  CAS  Google Scholar 

  • Knowles, N.R., J.M. Blauer, and L.O. Knowles. 2012. Shifting potato tuber size distribution with plant growth regulators. Proceedings of the Washington-Oregon Potato Conference, Jan. 24–26, Kennewick, WA. pp. 20–28.

  • Kumar, G.N.M., and N.R. Knowles. 1993. Involvement of auxin in the loss of apical dominance and plant growth potential accompanying aging of potato seed tubers. Canadian Journal of Botany 71: 541–550.

    Article  CAS  Google Scholar 

  • Lang, N.S., R.G. Stevens, R.E. Thornton, W.L. Pan, and S. Victory. 1999. Nutrient management guide: Central Washington irrigated potatoes. Pullman: Washington State University Cooperative Extension.

    Google Scholar 

  • Lenfesty, C.M. 1967. Soil Survey. Washington D.C: Adams County, Washington.

    Google Scholar 

  • Lindqvist-Kreuze, H., A. Khan, E. Salas, S. Meiyalaghan, S. Thomson, R. Gomez, and M. Bonierbale. 2015. Tuber shape and eye depth variation in a diploid family of Andean potatoes. BMC Genetics 16: 57–66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Love, S.L., and A. Thompson-Johns. 1999. Seed piece spacing influences yield, tuber size distribution, stem and tuber density, and net returns of three processing potato cultivars. HortScience 34: 629–633.

    Google Scholar 

  • MacLeod, D.J., and J.L. Howatt. 1958. The effect of gibberellin compounds on the shape of potato tubers. American Potato Journal 35: 596–597.

    Article  CAS  Google Scholar 

  • Mikitzel, L.J. 1993. Influencing seed tuber yield of ranger russet and Shepody potatoes with gibberellic acid. American Potato Journal 70: 667–676.

    Article  CAS  Google Scholar 

  • Mikitzel, L.J., and N. Fuller. 1995. Dry gibberellic acid combined with talc or fir bark enhances early stem and tuber growth of Shepody potato. American Potato Journal 72: 545–550.

    Article  Google Scholar 

  • Mikitzel, L.J., and N.R. Knowles. 1990. Effect of potato seed-tuber age on plant establishment and amelioration of age-linked effects with auxin. Plant Physiology 93: 967–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson, D.C., and M.C. Thoreson. 1986. Relationships between tuber size and time of harvest to hollow heart initiation in dryland Norgold russet potatoes. American Potato Journal 63: 155–161.

    Article  Google Scholar 

  • Novy, R.G., D.L. Corsini, S.L. Love, J.J. Pavek, D.C. Hane, C.C. Shock, K.A. Rykbost, C.R. Brown, and R.E. Thornton. 2003. Alturas: A multi-purpose, russet potato cultivar with high yield and tuber specific gravity. American Journal of Potato Research 80: 295–301.

    Article  Google Scholar 

  • Novy, R.G., J.L. Whitworth, J.C. Stark, B. Schneider, N.R. Knowles, M.J. Pavek, L.O. Knowles, B.A. Charlto, V. Sathuvalli, S. Yilma, C.R. Brown, M. Thornton, T.L. Brandt, and N. Olsen. 2017. Payette russet: A dual-purpose potato cultivar with cold-sweetening resistance, low acrylamide formation, and resistance to late blight and potato virus Y. American Journal of Potato Research 94: 38–53.

    Article  CAS  Google Scholar 

  • O’Brien, P.J., E.J. Allen, J.N. Bean, R.L. Griffith, S.A. Jones, and J.L. Jones. 1983. Accumulated day-degrees as a measure of physiological age and the relationships with growth and yield in early potato varieties. Journal of Agricultural Science 101: 613–631.

    Article  Google Scholar 

  • Pavek, M.J., and N.R. Knowles. 2018. WSU potato cultivar yield and postharvest quality evaluations for 2017. Washington State University Special Report. 102 pp.

  • Rappaport, L.H., H. Timm, and L.F. Lippert. 1958. Gibberellin on white potatoes applied to freshly harvested, resting potato tubers, or used in preharvest foliar sprays, gibberellin promotes sprouting. California Agriculture 12: 4–14.

    Google Scholar 

  • Rex, B.L., W.A. Russel, and H..R. Wolfe. 1987. The effect of spacing of seedpieces on yield, quality and economic value for processing of Shepody potatoes in Manitoba. American Journal of Potato Research 64:177–189.

    Article  Google Scholar 

  • Shu, K., X. Liu, Q. Xie, and Z. He. 2016. Two faces of one seed: Hormonal regulation of dormancy and germination. Molecular Plant 9: 34–45.

    Article  CAS  PubMed  Google Scholar 

  • Si, Y., S. Sankaran, N.R. Knowles, and M.J. Pavek. 2017. Potato tuber length-width ratio assessment using image analysis. American Journal of Potato Research 94: 88–93.

    Article  Google Scholar 

  • Van Eck, H.J., J.M.E. Jacobs, P. Stam, J. Ton, W.J. Stiekema, and E. Jacobsen. 1994. Multiple alleles for tuber shape in diploid potato detected by qualitative and quantitative genetic analysis using RFLPs. Genetics 137: 303–309.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Washington State Potato Commission and the Washington State Department of Agriculture Specialty Crop Block Grant program for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Richard Knowles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dean, C.J., Knowles, L.O. & Richard Knowles, N. Auxin Modulates Gibberellin-Induced Effects on Growth, Yield, and Raw Product Recovery for Frozen Processing in Potato (Solanum tuberosum L.). Am. J. Potato Res. 95, 622–641 (2018). https://doi.org/10.1007/s12230-018-9668-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-018-9668-7

Keywords

Navigation