American Journal of Potato Research

, Volume 95, Issue 5, pp 584–596 | Cite as

Characterizing Zebra Chip Symptom Severity and Identifying Spectral Signatures Associated with ‘Candidatus Liberibacter solanacearum’-Infected Potato Tubers

  • Zhiguo Zhao
  • Sean M. PragerEmail author
  • Regina K. Cruzado
  • Xi Liang
  • William R. Cooper
  • Gongshe Hu
  • Arash RashedEmail author


Zebra chip (ZC) disease has been a threat to the US potato industry for nearly two decades. ZC is associated with the bacteria ‘Candidatus Liberibacter solanacearum’ (Lso), which is transmitted by the potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae). ZC reduces yield and quality, due to discoloration of the tuber tissue. Symptom severity is affected by the time of infection and early-season infections express relatively higher degrees of ZC. Although tubers infected late in the growing season, i.e. within 2 weeks of harvest, express minimal to no symptoms, they may proceed to express ZC symptoms following storage. Currently, visualization of ZC symptoms in tubers is used by processors to estimate the percentage of ZC-affected tubers in truckloads of potatoes. This approach, however, is time consuming and relies on evaluations of a small sample size. Thus, it is likely to fail in detecting the asymptomatic late infections. Using several potato genotypes infected at different times during the growing season, this study was set to determine if visible and near infrared spectrometry, and infrared thermal imaging, can be used to distinguish ZC-affected tubers, and to predict the severity of ZC symptoms. The subjective symptom score categorization, commonly used in ZC studies, corresponded with the percentage of the symptomatic area in the tubers sliced at the solon attachment end. The percentage of symptomatic area was also correlated with Lso titer. Reflectance effectively distinguished infected and uninfected tubers with high accuracy; the combined wavelengths 468, 582, 680 and 720-nm were the most effective in predicting symptom severity. Near infrared (NIR) and infrared (IR) thermal imaging failed to distinguish tubers based on Lso infection status after storage. The quantitative measure of ZC severity, and the effectiveness of some visual wavelengths in detecting ZC may help to facilitate selection assays for ZC resistance. While in our study infrared imaging did not appear to be effective in distinguishing Lso- affected tubers after storage, additional studies with field harvested tubers are still needed to evaluate the effectiveness of VIS, NIR and IR spectrometry in screening for ZC.


Infrared thermal imaging Lso Symptomology Zebra chip Spectrometry 


La enfermedad de la papa rayada (ZC, zebra chip, por sus siglas en inglés) ha sido una amenaza para la industria de la papa en los EU por cerca de dos décadas. Se asocia ZC con la bacteria ‘Candidatus Liberibacter solanacearum’ (Lso), que se transmite por el psílido de la papa Bactericera cockerelli (Šulc) (Hemiptera: Triozidae). ZC reduce el rendimiento y la calidad, debido a la pigmentación del tejido del tubérculo. Se afecta la severidad del síntoma por el tiempo de infección, y las infecciones tempranas expresan relativamente mayores grados de ZC. Aun cuando los tubérculos infectados tarde durante el ciclo del cultivo, i. e. dentro de las dos semanas a la cosecha, no expresan síntomas o son mínimos, se pudiera proceder a la expresión en el almacenamiento posterior. Actualmente, la visualización de los síntomas de ZC en tubérculos se usa por los procesadores para estimar el porcentaje de tubérculos afectados por ZC en cargamentos de papas. Este enfoque, no obstante, es tardado y confía en evaluaciones de un pequeño tamaño de muestra. De aquí que es muy probable que se falle en la detección de infecciones tardías asintomáticas. Mediante el uso de varios genotipos de papa infectados a diferentes tiempos durante el ciclo de cultivo, se estableció este estudio para determinar si la espectrometría visible e infrarroja cercana, y la imagen infrarroja térmica, pueden usarse para distinguir los tubérculos afectados, y para predecir la severidad de los síntomas por ZC. La categorización de la evaluación subjetiva del síntoma comúnmente usada en estudios de ZC, correspondió con el porcentaje del área sintomática en los tubérculos rebanados en el extremo de la unión con el estolón. El porcentaje del área sintomática también estuvo correlacionada con el título Lso. La reflectancia distinguió efectivamente los tubérculos infectados y no infectados con alta precisión; las longitudes de onda combinadas de 468, 582, 680, y 720 nm fueron las más efectivas en la predicción de la severidad del síntoma. El infrarrojo cercano (NIR) y la imagen de infrarrojo térmico fallaron para distinguir los tubérculos con base en el estatus de la infección Lso después del almacenamiento. La medición cuantitativa de severidad por ZC, y la efectividad de algunas longitudes de onda visuales en la detección de ZC pudieran ayudar a facilitar los ensayos de selección para resistencia a ZC. Mientras que en nuestro estudio la imagen infrarroja no pareció ser efectiva en la distinción del Lso de tubérculos afectados después del almacenamiento, aun se necesitan estudios adicionales con tubérculos cosechados en el campo para evaluar la efectividad de la espectrometría VIS, NIR, e IR, en los estudios para ZC.



We would like to thank our laboratory technicians, Fabiola Aguilar, for her help with different aspects of this project, and Heather Headrick, for infrared thermal camera and software instructions. We would also like to thank Dr. Richard Novy for providing potato genotypes, and Dr. Nora Olsen and Lynn Woodell for facilitating the storage process for the tubers used in this study. This work was supported by the USDA-National Institute of Food and Agriculture, Hatch/Rashed project IDA01506 and USDA- National Institute of Food and Agriculture project 2014-67014-22408. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Supplementary material

12230_2018_9666_MOESM1_ESM.pdf (5.3 mb)
ESM 1 (PDF 5431 kb)
12230_2018_9666_MOESM2_ESM.pdf (6.2 mb)
ESM 2 (PDF 6310 kb)


  1. Agrios, N.G. 1997. Plant pathology. Genetics of plant disease, 4th edition, 115–136 Academic Press.Google Scholar
  2. Ausmus, B.S., and J.W. Hilty. 1971. Reflectance studies of healthy, maize dwarf mosaic virus-infected, and Helminthosporium maydis-infected corn leaves. Remote Sensing of Environment 2: 77–81.CrossRefGoogle Scholar
  3. Blanchfield, A.L., S.A. Robinson, L.J. Renzullo, and K.S. Powell. 2006. Phylloxera-infested grapevines have reduced chlorophyll and increased photoprotective pigment content—can leaf pigment composition aid pest detection? Functional Plant Biology 33: 507–514.CrossRefGoogle Scholar
  4. Bock, C.H., G.H. Poole, P.E. Parker, and T.R. Gottwald. 2010. Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Critical Reviews in Plant Sciences 29: 59–107.CrossRefGoogle Scholar
  5. Buchman, J.L., T.W. Fisher, V.G. Sengoda, and J.E. Munyaneza. 2012. Zebra chip progression: From inoculation of potato plants with Liberibacter to development of disease symptoms in tubers. American Journal of Potato Research 89: 159–168.CrossRefGoogle Scholar
  6. Diaz-Montano, J., B.G. Vindiola, N. Drew, R.G. Novy, J.C. Miller, and J.T. Trumble. 2013. Resistance of selected potato genotypes to the potato psyllid (Hemiptera: Triozidae). American Journal of Potato Research 91: 363–367.CrossRefGoogle Scholar
  7. Echegaray, E.R., S.I. Rondon, and P.B. Hamm. 2015. Assessment of potato psyllid Bactericera cockerelli (Hemiptera: Triozidae) and zebra chip disease in four commercial potato varieties in the Columbia Basin. American Journal of Potato Research 92: 483–490.CrossRefGoogle Scholar
  8. Graeff, S., J. Link, and W. Claupein. 2006. Identification of powdery mildew (Erysiphe graminis sp. tritici) and take-all disease (Gaeumannomyces graminis sp. tritici) in wheat (Triticum aestivum L.) by means of leaf reflectance measurements. Central European Journal of Biology 1: 275–288.Google Scholar
  9. Grant, L. 1987. Diffuse and specular characteristics of leaf reflectance. Remote Sensing of Environment 22: 309–322.CrossRefGoogle Scholar
  10. Hansen, A.K., J.T. Trumble, R. Stouthamer, and T.D. Paine. 2008. A new huanglongbing species, ‘Candidatus Liberi- bacter psyllaurous’ found to infect tomato and potato, is vectored by the psyllid Bactericera cockerelli (Sulc). Applied and Environmental Microbiology 74: 5862–5865.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Hastie, T., and B. Efron. 2013. lars: least angle regression, lasso and forward stagewise. R package version 1.2.
  12. Lê, S., J. Josse, and F. Husson. 2008. FactoMineR: an R package for multivariate analysis. Journal of Statistical Software 25: 1–18.CrossRefGoogle Scholar
  13. Levy, J., A. Ravindran, D. Gross, C. Tamborindeguy, and E. Pierson. 2011. Translocation of “Candidatus Liberibacter solanacearum”, the zebra chip pathogen, in potato and tomato. Phytopathology 101: 1285–1291.CrossRefPubMedGoogle Scholar
  14. Li, W., J.S. Hartung, and L. Levy. 2006. Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. Journal of Microbiological Methods 66: 104–115.CrossRefPubMedGoogle Scholar
  15. Li, W., J.A. Abad, R.D. French-Monar, J. Rascoe, A. Wen, N.C. Gudmestad, G.A. Secor, I.M. Lee, Y. Duan, and L. Levy. 2009. Multiplex real-time PCR for detection, identification and quantification of “Candidatus Liberibacter solanacearum” in potato plants with zebra chip. Journal of Microbiological Methods 78: 59–65.CrossRefPubMedGoogle Scholar
  16. Mahlein, A.-K., U. Steiner, W.-H. Dehne, and E.-C. Oerke. 2010. Spectral signatures of sugar beet leaves for the detection and differentiation of diseases. Precision Agriculture 11: 413–431.CrossRefGoogle Scholar
  17. Moshou, D., C. Bravo, J. West, A. McCartney, and H. Ramon. 2004. Automatic detection of ‘yellow rust’ in wheat using reflectance measurements and neural networks. Computers and Electronics in Agriculture 44: 173–188.CrossRefGoogle Scholar
  18. Muhammed, H.H. 2005. Hyperspectral crop reflectance data for characterizing and estimating fungal disease severity in wheat. Biosystems Engineering 91: 9–20.CrossRefGoogle Scholar
  19. Munyaneza, J.E. 2012. Zebra chip disease of potato: Biology, epidemiology, and management. American Journal of Potato Research 89: 329–350.CrossRefGoogle Scholar
  20. Munyaneza, J.E., J.M. Crosslin, and J.E. Upton. 2007. Association of Bactericera cockerelli (Homoptera: Psyllidae) with “Zebra Chip”, a new potato disease in southwestern United States and Mexico. Journal of Economic Entomology 100: 656–663.CrossRefPubMedGoogle Scholar
  21. Munyaneza, J.E., J.L. Buchman, V.G. Sengoda, T.W. Fisher, and C.C. Pearson. 2011. Susceptibility of selected potato varieties to zebra chip potato disease. American Journal of Potato Research 88: 435–440.CrossRefGoogle Scholar
  22. Niemira, B.A., W.W. Kirk, and J.M. Stein. 1999. Screening for late blight susceptibility in potato tubers by digital analysis of cut tuber surfaces. Plant Disease 83: 469–473.CrossRefGoogle Scholar
  23. Penuelas, J., and I. Filella. 1998. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends in Plant Science 3: 151–156.CrossRefGoogle Scholar
  24. Polischuk, V.P., T.M. Shadchina, T.I. Kompanetz, I.G. Budzanivskaya, and A.L. Sozinov. 1997. Changes in reflectance spectrum characteristic of Nicotiana debneyi plant under the influence of viral infection. Archives of Phytopathology and Plant Protection 31: 115–119.CrossRefGoogle Scholar
  25. Prager, S.M., C.M. Wallis, M. Jones, R. Novy, and J.T. Trumble. 2018. Examining the potential role of foliar chemistry in imparting potato germplasm tolerance to potato psyllid, green peach aphid, and zebra chip disease. Journal of Economic Entomology.
  26. Rashed, A., C.M. Wallis, L. Paetzold, F. Workneh & C.M. Rush. 2013. Zebra chip disease and potato biochemistry: Tuber physiological changes in response to ‘Candidatus Liberibacter solanacearum’ infection over time. Phytopathology 103:419–426.Google Scholar
  27. Rashed, A., F. Workneh, L. Paetzold, J. Gray, and C.M. Rush. 2014. Zebra chip disease development in relation to plant age and time of ‘Candidatus Liberibacter solanacearum’ infection. Plant Disease 98: 24–31.CrossRefGoogle Scholar
  28. Rashed, A., F. Workneh, L. Paetzold, and C.M. Rush. 2015. Emergence of ‘Candidatus Liberibacter solanacearum’-infected seed potato in relation to the time of infection. Plant Disease 99: 274–280.CrossRefGoogle Scholar
  29. Rashed, A., C.M. Wallis, L. Paetzold, F. Workneh, and C.M. Rush. 2016. Variations in Zebra chip disease expression and tuber biochemistry in response to vector density. Phytopathology 106: 854–860.CrossRefPubMedGoogle Scholar
  30. Rashed, A., N. Olsen, C.M. Wallis, L. Paetzold, L. Woodell, M. Rashidi, F. Workneh, and C.M. Rush. 2018. Post-harvest development of Candidatus Liberibacter solanacearum and its impact on the late-season infected potato tubers, with emphasis on cold storage procedures. Plant Disease 102: 1–8.CrossRefGoogle Scholar
  31. Rashidi, M., R. Novy, C.M. Wallis, and A. Rashed. 2017. Characterization of host plant resistance to zebra chip disease from species-derived potato genotypes and the identification of new sources of zebra chip resistance. PLoS One 12: e0183283.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Rubio-Covarrubias, O.A., M.A. Cadena-Hinojosa, S.M. Prager, C.M. Wallis, and J.T. Trumble. 2017. Characterization of the tolerance against zebra chip disease in tubers of advanced potato line from Mexico. American Journal of Potato Research 94: 342–356.CrossRefGoogle Scholar
  33. Rush, C.M., F. Workneh, and A. Rashed. 2015. Significance and epidemiological aspects of late-season infections in the management of potato zebra chip. Phytopathology 105: 929–936.CrossRefPubMedGoogle Scholar
  34. Sankaran, S., A. Mishra, R. Ehsani, and C. Davis. 2010. A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture 72: 1–13.CrossRefGoogle Scholar
  35. Secor, G.A., V.V. Rivera-Varas, J.A. Abad, I.M. Lee, G.R.G. Clover, L.W. Liefting, X. Li, and S.H. De Boer. 2009. Association of ‘Candidatus Liberibacter solanacearum’ with zebra chip disease of potato established by graft and psyllid transmission, electron microscopy, and PCR. Plant Disease 93: 574–583.CrossRefGoogle Scholar
  36. Swisher, K.D., J.E. Munyaneza, and J.M. Crosslin. 2012. High resolution melting analysis of the cytochrome oxidase I gene identifies three haplotypes of the potato psyllid in the United States. Environmental Entomology 41: 1019–1028.CrossRefGoogle Scholar
  37. Venables, W.N., and B.D. Ripley. 2002. Modern applied statistics with S. 4th ed. New York: Springer.CrossRefGoogle Scholar
  38. Wallis, C.M., J. Chen, and E.L. Civerolo. 2012. Zebra chip-diseased potato tubers are characterized by increased levels of host phenolics, amino acids, and defense-related proteins. Physiological and Molecular Plant Pathology 78: 66–72.CrossRefGoogle Scholar
  39. Wallis, C.M., A. Rashed, L. Paetzold, F. Workneh, and C.M. Rush. 2014. Similarities and differences in physiological responses to ‘Candidatus Liberibacter solanacearum’ infection among different potato cultivars. Phytopathology 104: 126–133.CrossRefPubMedGoogle Scholar
  40. Wallis, C.M., J.E. Munyaneza, J. Chen, R. Novy, G. Bester, J.L. Buchman, J. Nordgaard, and P. van Hest. 2015. ‘Candidatus Liberibacter solanacearum’ titers in and infection effects on potato tuber chemistry of promising germplasm exhibiting tolerance to Zebra Chip disease. Phytopathology 105: 1573–1584.CrossRefPubMedGoogle Scholar
  41. Wen, A., I. Mallik, V.Y. Alvarado, J.S. Pasche, X. Wang, W. Li, L. Levy, H. Lin, H.B. Scholthof, T.E. Mirkov, C.M. Rush, and N.C. Gudmestad. 2009. Detection, distribution, and genetic variability of ‘Candidatus Liberibacter’ species associated with zebra chip complex disease of potato in North America. Plant Disease 93: 1102–1115.CrossRefGoogle Scholar
  42. Wen, A., C. Johnson, and N.C. Gudmestad. 2013. Development of a PCR assay for the rapid detection and differentiation of ‘Candidatus Liberibacter solanacearum’ haplotypes and their spatiotemporal distribution in the United States. American Journal of Potato Research 90: 229–236.CrossRefGoogle Scholar
  43. West, J.S., C. Bravo, R. Oberti, D. Lemaire, D. Moshou, and H.A. McCatney. 2003. The potential of optical canopy measurement for targeted control of field crop diseases. Annual Review of Phytopathology 41: 593–614.CrossRefPubMedGoogle Scholar
  44. Wu, D., L. Feng, C. Zhang, and Y. He. 2008. Early detection of Botrytis cinerea on eggplant leaves based on visible and near-infrared spectroscopy. Transactions of the ASABE 51: 1133–1139.CrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2018

Authors and Affiliations

  • Zhiguo Zhao
    • 1
  • Sean M. Prager
    • 2
    Email author
  • Regina K. Cruzado
    • 3
  • Xi Liang
    • 4
  • William R. Cooper
    • 5
  • Gongshe Hu
    • 6
  • Arash Rashed
    • 3
    Email author
  1. 1.College of AgricultureShanxi Agricultural UniversityTaiguChina
  2. 2.Department of Plant SciencesUniversity of SaskatchewanSaskatoonCanada
  3. 3.Department of Entomology, Plant Pathology and Nematology, Aberdeen R&E CenterUniversity of IdahoAberdeenUSA
  4. 4.Department of Plant Sciences, Aberdeen R&E CenterUniversity of IdahoAberdeenUSA
  5. 5.United States Department of Agriculture, Agricultural Research ServiceYakima Agricultural Research Laboratory, Temperate Tree Fruit and Vegetable Research UnitWapatoUSA
  6. 6.United States Department of Agriculture, Agricultural Research Service, Small Grains and Potato Germplasm Research UnitAberdeenUSA

Personalised recommendations