American Journal of Potato Research

, Volume 95, Issue 5, pp 539–548 | Cite as

Effects of Foliar and Tuber Sprout Suppressants on Storage of Ware Potatoes under Tropical Conditions

  • R. O. Nyankanga
  • W. W. Murigi
  • S. I. Shibairo
  • O. M. OlanyaEmail author
  • R. P. Larkin


Potato (Solanum tuberosum L.) is an important source of dietary carbohydrate and cash income generation for farmers in the tropical highlands of Kenya. The feasibility for cold storage at the farm level is limited due to the high costs of maintaining such a facility and there is limited data on the long-term post-harvest storage and quality of tubers of tropical-adapted cultivars. Application of sprout suppressants to control premature sprouting of ware potato is an attractive proposition. The objectives of this study were to evaluate the efficacy of pre-harvest foliar applications of paclobutrazol (PBZ) and ethephon for sprout suppression on ware potato tubers in storage. Post-harvest spray applications of Isopropyl N-(3-chlorophenyl carbamate) chloropropham (CIPC) and 1,4-dimethylnaphthalene (DMN) on tubers as fog was also evaluated. Potato cultivars had varying levels of tuber dormancy. The tubers were stored at ambient temperature (23 C) and evaluated weekly for 24 weeks for percent of tubers sprouting, length of longest sprouts, tuber weight loss and assessed for dormancy for 24 weeks. Paclobutrazol prolonged tuber dormancy by 21–31 days and reduced tuber weight loss. Ethephon treatment had no effect on dormancy and tuber weight loss. Potato tubers treated with CIPC had greater sprout control than the other treatments in storage. Tuber response to DMN treatment varied among the three potato cultivars evaluated. The findings from this study imply that PBZ is effective in prolonging potato tuber dormancy for short-term basis at 23 C, while CIPC applied on tubers was effective for long term storage. Optimization of post-harvest potato storage can improve food security in the highland tropics.


Sprout inhibitors Solanum tuberosum Post-harvest Weight loss Tropical highlands 


La papa (Solanum tuberosum L.) es una fuente importante de carbohidratos en la dieta y de generación de ingresos para agricultores en los altiplanos tropicales de Kenia. La factibilidad para almacenamiento en frío a nivel de campo es limitada debido a los altos costos del mantenimiento de tales instalaciones y hay datos limitados en el almacenamiento postcosecha a largo plazo y la calidad de los tubérculos de variedades adaptadas al trópico. La aplicación de inhibidores de la brotación para controlar la brotación prematura de papa de consumo es una propuesta atractiva. Los objetivos de este estudio fueron evaluar la eficacia de aplicaciones foliares pre-cosecha de paclobutrazol (PBZ) y de etefon para inhibir brotación en tubérculos de consumo en almacenamiento. También se evaluaron aplicaciones por aspersión en postcosecha de Isopropil N-(3-clorofenil carbamato), chloroprofam (CIPC), y 1, 4-dimetilnaftaleno (DMN), en tubérculos en nebulización. Las variedades de papa tuvieron diversos niveles de dormancia del tubérculo. Estos fueron almacenados a temperatura ambiente (23 C) y evaluados semanalmente por 24 semanas para porcentaje de tubérculos brotados, longitud de los brotes más largos, pérdida de peso del tubérculo y analizados para dormancia por 24 semanas. Paclobutrazol prolongó la dormancia por 21–31 días y redujo la pérdida de peso del tubérculo. El tratamiento con etefon no tuvo efecto en el período de dormancia ni en la pérdida de peso. Los tubérculos tratados con CIPC tuvieron un mayor control de brotación que los otros tratamientos en el almacén. La respuesta de los tubérculos al tratamiento con DMN varió entre las tres variedades evaluadas. Lo que se encontró de este estudio implica que PBZ es efectivo en la prolongación de dormancia en tubérculos de papa con base a corto plazo a 23 C, mientras que CIPC aplicado en tubérculos fue efectivo para almacenamiento a largo plazo. La optimización del almacenamiento postcosecha puede mejorar la seguridad alimentaria en los altiplanos tropicales.



The authors are grateful to the Kenya Agricultural and Livestock Research Institute, Tigoni and the University of Nairobi, Kabete Campus for field sites for cultivation of potato cultivars and production of tubers used in this research. We are grateful to the University of Nairobi, Kibabii University and the USDA-Agricultural Research Service for technical and logistical support.

Compliance with Ethical Standards


The experiments comply with the current laws of Kenya and ethical standards or requirements were met.


  1. Abdel-Rahman, M., and F.M.R. Isenberg. 1974. The role of exogenous plant regulators in the dormancy of onion bulbs. The Journal of Agricultural Science 82: 113–116.CrossRefGoogle Scholar
  2. Afek, U., J. Orenstein, and E. Nuriel. 2000. Using HPP (hydrogen peroxide plus) to inhibit potato sprouting during storage. American Journal of Potato Research 77: 63–65.CrossRefGoogle Scholar
  3. Alexopoulos, A.A., G. Aivalakis, K.A. Akoumianakis, and H.C. Passam. 2008. Effect of gibberellic acid on the duration of dormancy of potato tubers produced by plants derived from true potato seed. Postharvest Biology and Technology 49: 424–430.CrossRefGoogle Scholar
  4. Balamani, V., and B.W. Poovaiah. 1985. Retardation of shoot growth and promotion of tuber growth of potato plants by paclobutrazol. American Potato Journal 62: 363–369.CrossRefGoogle Scholar
  5. Bandara, P.M.S., and K.K. Tanino. 1995. Paclobutrazol enhances minituber production in Norland potatoes. Journal of Plant Growth Regulation 14: 151–155.CrossRefGoogle Scholar
  6. Benkeblia, N., A.A. Alexopoulos, and H.C. Passam 2009. Physiological and biochemical regulation of dormancy ansd sprouting in potato tubers (Solanum tuberosum L.). Fruit, Vegetable and Cereal Science and Biotechnology 2(Special Issue 1): 54–68, Global Science Books.Google Scholar
  7. Boldt, J.L. 2008. Whole plant reponse of chrysanthemum to paclobutrazol, chlormequat chloride, and (s)-abscisic acid as a function of exposure time using a split-root system. M.S. Thesis, University of Florida, Gainsville, FL, p. 61.Google Scholar
  8. Campbell, M.A., A. Gleichsner, R. Alsbury, D. Horvath, and J. Suttle. 2010. The sprout inhibitors chlorpropham and 1, 4-dimethylnaphthalene elicit different transcriptional profiles and do not suppress growth through a prolongation of the dormant state. Plant Molecular Biology 73: 181–189.CrossRefPubMedGoogle Scholar
  9. Cvikrova, M., L.S. Sukhova, J. Eder, and N.P. Korableva. 1994. Possible involvement of abscisic acid, ethylene and phenolic acids in potato tuber dormancy. Plant Physiological Biochemistry 32: 685–691.Google Scholar
  10. De Weerd, J.W., M.K. Thornton, and B. Shafii. 2010. Sprout suppressing residue levels of 1, 4 dimethylnaphthalene (1,4DMN) in potato cultivars. American Journal of Potato Research 87: 434–445.CrossRefGoogle Scholar
  11. Ezekiel, R, P.S. Dahiya, and G.S. Shekhawat. 2004. Traditional methods of potato storage in the Malwa region of Madhya Pradesh. Technical Bulletin No. 57, Central Potato Research Institute (CPRI), Shimla, India, p. 43.Google Scholar
  12. Gautam, I.P., M.D. Sharma, B.B. Khatri, R.B. Thapa, and K. Shrestha. 2013. Storability and chips quality of chemical treated potatoes under ordinary condition. Journal of Basic and Applied Sciences 9: 1.Google Scholar
  13. Jaetzold, R., H. Schmidt, B. Hornetz, and B. Shisanya. 2006. Farm management handbook of Kenya, Vol II. Nairobi, Kenya Ministry of Agriculture, Natural Conditions and Farm Management Information of Central Kenya, p. 573.Google Scholar
  14. Janssens, S.R.M., S.G. Wiersema, and H.T. Goos. 2013. The value chain for seed and ware potatoes in Kenya: Opportunities for development (No. 13–080, p. 57). LEI Wageningen, Holland.Google Scholar
  15. Kaguongo, W., G. Maingi, I. Barker, N. Nganga, and J. Guenthner. 2014. The value of seed potatoes from four systems in Kenya. American Journal of Potato Research 91: 109–118.CrossRefGoogle Scholar
  16. Khanbari, O.S., and A.K. Thompson. 1996. Effect of controlled atmosphere, temperature and cultivar on sprouting and processing quality of stored potatoes. Potato Research 39: 523–531.CrossRefGoogle Scholar
  17. Khuankaew, T., T. Ohyama, and S. Ruamrungsri 2009. Effecst of ethephon application on growth and development of Curcuma akismatifolia Gagnep. Bulletin Faculty Agriculture Niigata University 62: 9–15.Google Scholar
  18. Kinyua, Z.M., M. Olanya, J.J. Smith, R. El-Bedewy, S.N. Kihara, R.K. Kakuhenzire, C. Crissman, and B. Lemaga. 2005. Seed plot technique: Empowerment of farmers in production of bacterial wilt-free seed potato in Kenya and Uganda. In Bacterial wilt disease and the Ralstonia Solanacearum species complex, ed. C. Allen, P. Prior, and A.C. Hayward. St. Paul: APS Press 510p.Google Scholar
  19. Kleinkopf, G.E., N.A. Oberg, and N.L. Olsen. 2003. Sprout inhibition in storage: current status, new chemistries and natural compounds. American Journal of Potato Research 80: 317–327.CrossRefGoogle Scholar
  20. Knowles, N.R., L.O. Knowles, and M.M. Haines. 2005. 1, 4-Dimethylnaphthalene treatment of seed potatoes affects tuber size distribution. American Journal of Potato Research 82: 179–190.CrossRefGoogle Scholar
  21. Kumar, V., A. Kumar, V.K. Dohrey, V.K. Singh, and V. Umrao. 2010. Effect of foliar application of plant growth regulators on storage behavior of potato tubers. Progressive Agriculture 10: 282–287.Google Scholar
  22. Lewis, M.D., G.E. Kleinkopf, and K.K. Shetty. 1997. Dimethylnaphthalene and diisopropyl naphthalene for potato sprout control in storage: 1. Application methodology and efficacy. American Potato Journal 74: 183–197.CrossRefGoogle Scholar
  23. Lim, H.T., C.S. Yoon, S.P. Choi, and S.P. Dhital. 2004. Application of gibberellic acid and paclobutrazol for efficient production of potato (Solanum tuberosum L.) minitubers and their dormancy breaking under soilless culture system. Horticulture Environment and Biotechnology 45: 189–193.Google Scholar
  24. Lung’aho, C., S.K.N. Nderitu, J.N. Kabira, R. El-Bedewy, O.M. Olanya, and A. Walingo. 2006. Yield performance and release of late blight tolerant potato varieties in Kenya. Journal of Agronomy 5: 57–61.CrossRefGoogle Scholar
  25. Mehta, A. 2005. Commercial potential of CIPC for sprout inhibition in potatoes under heap storage. Indian Journal of Potato 32: 203–204.Google Scholar
  26. Mehta, A., and R. Ezekiel. 2010. Non-refrigerated storage of potatoes. Potato Journal 37: 3–4.Google Scholar
  27. Meigh, D.F., A.E. Filmer, and R. Self. 1973. Growth-inhibitory volatile aromatic compounds produced by Solanum tuberosum tubers. Phytochemistry 12: 987–993.CrossRefGoogle Scholar
  28. Nyankanga, R.O., H.C. Wein, O.M. Olanya, and P.S. Ojiambo. 2004. Farmers’ cultural practices and management of potato late blight in Kenya highlands: implications for development of integrated disease management. International Journal of Pest Management 50: 135–144.CrossRefGoogle Scholar
  29. Nyankanga, R.O., W. Kiplagat, R. Narla, S. Shibairo, J. Kabira, J. Landeo, and M. Olanya. 2014. Effects of early and late harvest on agronomic performance and stability of late blight resistant (R-gene free) potato genotypes. Journal of Crop Science and Biotechnology 17: 89–96.CrossRefGoogle Scholar
  30. Olanya, O.M., R. Nyankanga, P. Ojiambo, B. Lemaga, R. Kakuhenzire, and D. Fontem. 2012. Optimization of late blight and bacterial wilt management in potato production systems in the highland tropics of Africa. In: He Z., Larkin, R.P., Honeycutt, C.W. (Eds). Sustainable potato production: Global case studies, Amsterdam, Springer. 509–531. (Book Chapter, peer reviewed).Google Scholar
  31. Pande, P.C., S.V. Singh, S.K. Pandey, and B. Singh. 2007. Dormancy, sprouting behaviour and weight loss in Indian potato (Solanum tuberosum) varieties. Indian Journal of Agricultural Science 77: 715–720.Google Scholar
  32. Rylski, I., L. Rappaport, and H.K. Pratt. 1974. Dual effects of ethylene on potato dormancy and sprout growth. Plant Physiology 53: 658–662.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Shibairo, S.I., P. Demo, J.N. Kabira, P. Gildemarcher, F. Gachango, M. Menza, R.O. Nyankanga, G.N. Chemining'wa, and R.D. Narla. 2006. The efefcts of gibberellic acid (GA3) on sprouting and quality of potato seed tubers in difussed light and pit storage conditions. Journal of Biological Sciences 6: 723–733.Google Scholar
  34. Sonnewald, U. 2001. Control of potato tuber sprouting. Trends in Plant Science 6: 333–335.CrossRefPubMedGoogle Scholar
  35. Starman, T.W., and M.S. Williams. 2000. Growth retardants affect growth and flowering of scaevola. Horticultural Science 35: 36–38.Google Scholar
  36. Suttle, J.C. 1998. Involvement of ethylene in potato microtuber dormancy. Plant Physiology 118: 843–848.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Suttle, J.C. 2003. Auxin-induced sprout growth inhibition: role of endogenous ethylene. American Journal of Potato Research 80: 303–309.CrossRefGoogle Scholar
  38. Suttle, J.C. 2004. Physiological regulation of potato tuber dormancy. American Journal of Potato Research 81: 253–262.CrossRefGoogle Scholar
  39. Tekalign, T., and P.S. Hammes. 2004. Response of potato grown under non-inductive condition paclobutrazol: Shoot growth, chlorophyll content, net photosynthesis, assimilate partitioning, tuber yield, quality, and dormancy. Plant Growth Regulation 43: 227–236.CrossRefGoogle Scholar
  40. Thomas, T.H., and W.E.F. Rankin. 1982. Effect of ethephon on bulbing, bull-necking, yield and sprouting during storage of two onion cultivars (Allium cepa L.). Journal of Horticultural Science 57: 465–467.CrossRefGoogle Scholar
  41. Vijay, P., R. Ezekiel, and R. Pandey. 2016. Sprout suppression on potato: need to look beyond CIPC for more effective and safer alternatives. Journal of Food Science and Technology 53: 1–18.Google Scholar
  42. Wustman, R., and P.C. Struik. 2007. The canon of potato science: seed and ware potato storage. Potato Research 50: 351–355.CrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2018

Authors and Affiliations

  1. 1.Department of Plant Science and Crop ProtectionUniversity of NairobiNairobiKenya
  2. 2.Kibabii UniversityBungomaKenya
  3. 3.Eastern Regional Research Center, Food Safety and Intervention Technologies Research UnitUSDA-ARSWyndmoorUSA
  4. 4.New England Plant, Soil, and Water LaboratoryUSDA-ARSOronoUSA

Personalised recommendations