Skip to main content
Log in

Progress and Successes of the Specialty Crop Research Initiative on Acrylamide Reduction in Processed Potato Products

  • Symposium
  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Acrylamide, a suspected human carcinogen, is a Maillard reaction product that forms when carbohydrate-rich foods are cooked at high temperatures. Processed potato products, including French fries and potato chips, make a substantial contribution to total dietary acrylamide. Health safety concerns raised by acrylamide in food increased financial risks to the potato industry and encouraged industry to take a proactive approach toward acrylamide mitigation. The USDA National Institutes of Food and Agriculture Specialty Crop Research Initiative (SCRI) on acrylamide reduction in potato was a cooperative endeavor in which industry partners worked at a systems level with university and government researchers to develop acrylamide mitigation strategies. Short-term goals focused on identifying advanced breeding clones and recently released varieties that have lower acrylamide-forming potential than standard potato varieties. Research was also directed at developing more efficient potato breeding methods, including marker-assisted breeding, genome wide selection, and improved phenotyping methods. Data from the National Fry Processing Trial (NFPT) and SCRI agronomic trial have shown that dramatic reductions in acrylamide are achievable through the use of new varieties that maintain low concentrations of tuber reducing sugars. Chipping potato trials coordinated by Potatoes USA and data from breeding populations suggest that maintaining low tuber reducing sugars through extended storage and lowering tuber asparagine content are options for decreasing acrylamide content in potato chips. To have an impact, new varieties must have exceptional agronomic performance and must produce finished products that meet requirements for consumer attributes including color, texture and taste. Data consistently show that this is more easily achievable in chipping potatoes than in fry processing potatoes.

Resumen

La acrilamida, un posible cancerígeno humano, es un producto de la reacción de Maillard que se forma cuando alimentos ricos en carbohidratos se cocinan a altas temperaturas. Los productos procesados de papa, incluyendo las papas a la francesa y las hojuelas, hacen una contribución substancial para la acrilamida total en la dieta. Las preocupaciones en la seguridad de la salud, surgidas por la acrilamida en los alimentos, aumentó los riesgos financieros a la industria de la papa y estimuló a la industria a tomar una estrategia proactiva hacia la mitigación de la acrilamida. La Iniciativa de Investigación en Cultivos de Especialidad de los Institutos Nacionales de Alimentos y Agricultura del Departamento de Agricultura de los Estados Unidos (SCRI, por sus siglas en inglés) sobre la reducción de la acrilamida en papa, fue un esfuerzo de cooperación en el cual los socios de la industria trabajaron a nivel de sistemas con investigadores de universidades y del gobierno, para desarrollar estrategias de mitigación de la acrilamida. Las metas de corto plazo se enfocaron en la identificación de clones avanzados de mejoramiento y de variedades liberadas recientemente, que tienen un potencial más bajo de formación de acrilamida que las variedades comunes de papa. También se dirigió la investigación al desarrollo de métodos de mejoramiento genético más eficiente en papa, incluyendo el mejoramiento asistido con marcadores, amplia selección de genomios, y métodos mejorados para la descripción fenotípica. Datos del Ensayo Nacional en Procesamiento de Freído (NFPT) y el ensayo agronómico del SCRI, han mostrado que reducciones dramáticas en acrilamida son alcanzables a través del uso de nuevas variedades que mantienen bajas concentraciones de azúcares reductores en el tubérculo. Ensayos de freído en papa coordinados por Potatoes USA y datos de poblaciones de mejoramiento sugieren que manteniendo bajos los azúcares reductores de tubérculo mediante almacenamiento extendido y bajando el contenido de asparagina de tubérculo, son opciones para disminuir el contenido de acrilamida en las papas fritas. Para tener un impacto, las nuevas variedades deben tener comportamiento agronómico excepcional, y deben producir productos terminados que reúnan los requerimientos respecto a los atributos para el consumidor, incluyendo el color, textura y sabor. Los datos demuestran consistentemente que es más fácilmente alcanzable en papas fritas que en las de procesamiento.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arrendodo, A., and E. Weil. 2008. Atty. Gen. Brown Settles Potato Chip Lawsuit With Heinz, Frito-Lay & Kettle Foods. State of California, Department of Justice, Office of the Attorney General. http://oag.ca.gov/news/press-releases/atty-gen-brown-settles-potato-chip-lawsuit-heinz-frito-lay-kettle-foods. Acessed 6/27/16.

  • Becalski, A., B.P.-Y. Lau, D. Lewis, S.W. Seaman, S. Hayward, M. Sahagian, M. Ramesh, and Y. Leclerc. 2004. Acrylamide in french fries: Influence of free amino acids and sugars. Journal of Agricultural and Food Chemistry 52: 3801–3806.

    Article  PubMed  CAS  Google Scholar 

  • Bentley, A. 2004. The other Atkins revolution: Atkins and the shifting culture of dieting. Gastronomica 4: 34–45.

    Article  Google Scholar 

  • Bethke, P.C., and A.J. Bussan. 2013. Acrylamide in processed potato products. American Journal of Potato Research 90: 403–424.

    Article  CAS  Google Scholar 

  • Burley, V.J., D.C. Greenwood, S.J. Hepworth, L.K. Fraser, T.M. de Kok, S.G. van Breda, S.A. Kyrtopoulos, M. Botsivali, J. Kleinjans, P.A. McKinney, and J.E. Cade. 2010. Dietary acrylamide intake and risk of breast cancer in the UK women's cohort. British Journal of Cancer 103: 1749–1754.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chawla, R., R. Shakya, and C.M. Rommens. 2012. Tuber-specific silencing of asparagine synthetase-1 reduces the acrylamide-forming potential of potatoes grown in the field without affecting tuber shape and yield. Plant Biotechnology Journal 10: 913–924.

    Article  PubMed  CAS  Google Scholar 

  • Dearfield, K.L., C.O. Abernathy, M.S. Ottley, J.H. Brantner, and P.F. Hayes. 1988. Acrylamide: Its metabolism, developmental and reproductive effects, genotoxicity, and carcinogenicity. Mutation Research 195: 45–77.

    Article  PubMed  CAS  Google Scholar 

  • DiNovi, M. 2006. The 2006 Exposure Assessment for Acrylamide. FDA. http://www.fda.gov/downloads/Food/FoodborneIllnessContaminants/UCM197239.pdf. Accessed 6/27/16.

  • Dybing, E., and T. Sanner. 2003. Risk assessment of acrylamide in foods. Toxicological Sciences 75: 7–15.

    Article  PubMed  CAS  Google Scholar 

  • EFSA. 2008. Acrylamide carcinogenicity. New evidence in relation to dietary exposure. European Food Safety Authority Scientific Colloquium No. 11 - May 2008.

  • FAO/WHO. 2005. Statement of the scientific panel on contaminants in the food chain to a summary report on acrylamide in food of the 64th meeting of the Joint FAO/WHO Expert Committee on Food Additives. European Food Safety Authority. http://www.efsa.europa.eu/sites/default/files/scientific_output/files/main_documents/619.pdf. Accessed 6/27/16.

  • FAO/WHO. 2010. Joint FAO/WHO Expert Committee on Food Additives seventy-second meeting. JECFA/72/SC. JECFA. http://www.who.int/foodsafety/chem/summary72_rev.pdf. Accessed 6/27/16.

  • FDA. 2006a. Survey data on acrylamide in food: Individual food products. US Food and Drug Administration. http://www.fda.gov/Food/FoodborneIllnessContaminants/ChemicalContaminants/ucm053549.htm. Accessed 6/27/16.

  • FDA. 2006b. Survey Data on Acrylamide in Food: Total Diet Study Results. fda.gov . US Food and Drug Administration. http://www.fda.gov/Food/FoodborneIllnessContaminants/ChemicalContaminants/ucm053566.htm. Accessed 6/27/16.

  • FDA. 2016. Guidance for Industry: Acrylamide in foods. http://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/ucm374524.htm. Accessed 6/27/16.

  • FoodDrinkEurope. 2011. Food Drink Europe Acrylamide Toolbox 2011. Food Drink Europe. http://www.fooddrinkeurope.eu/uploads/publications_documents/Toolboxfinal260911.pdf. Accessed 6/27/16.

  • Garland, T.O., and M.W. Patterson. 1967. Six cases of acrylamide poisoning. British Medical Journal 4: 134–138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Halford, N.G., T.Y. Curtis, N. Muttucumaru, J. Postles, J.S. Elmore, and D.S. Mottram. 2012. The acrylamide problem: A plant and agronomic science issue. Journal of Experimental Botany 63: 2841–2851.

    Article  PubMed  CAS  Google Scholar 

  • Hogervorst, J.G., L.J. Schouten, E.J. Konings, R.A. Goldbohm, and P.A. van den Brandt. 2007. A prospective study of dietary acrylamide intake and the risk of endometrial ovarian, and breast cancer. Cancer Epidemiology, Biomarkers & Prevention 16: 2304–2313.

    Article  CAS  Google Scholar 

  • Hogervorst, J.G., L.J. Schouten, E.J. Konings, R.A. Goldbohm, and P.A. van den Brandt. 2008. Dietary acrylamide intake and the risk of renal cell, bladder, and prostate cancer. American Journal of Clinical Nutrition 87: 1428–1438.

    Article  PubMed  CAS  Google Scholar 

  • Hogervorst, J.G., B.-J. Baars, L.J. Schouten, E.J.M. Konings, R.A. Goldbohm, and P.A. van den Brandt. 2010. The carcinogenicity of dietary acrylamide intake: A comparative discussion of epidemiological and experimental animal research. Critical Reviews in Toxicology 40: 485–512.

    Article  PubMed  CAS  Google Scholar 

  • Huber, C., and J.K. Bond. 2011. Challenges to stimulating fresh potato consumption : a summary of market research. Agricultural Marketing Report. 11: 1–6. Colorado State University, Dept. of Agricultural and Resource Economics : Extension.

  • IARC. 1999. Acrylamide. IRAC monographs. 60: 389–433. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. http://monographs.iarc.fr/ENG/Monographs/vol60/volume60.pdf. Accessed 6/27/16.

  • Israilides, C., and V. Theodoros. 2015. Strategies to reduce the formation of acrylamide in potato chips: A market and consumer’s prospective. Current Research in Nutrition and Food Science Journal 3: 20–25.

    Article  Google Scholar 

  • Lacy, K., and W.E. Huffman. 2016. Consumer demand for potato products and willingness-to-pay for low-acrylamide, sulfite-free fresh potatoes and dices: Evidence from lab auctions. Journal of Agricultural and Resource Economics 41: 116–137.

    Google Scholar 

  • Larsson, S.C., A. Akesson, and A. Wolk. 2009. Long-term dietary acrylamide intake and risk of epithelial ovarian cancer in a prospective cohort of Swedish women. Cancer Epidemiology, Biomarkers & Prevention 18: 994–997.

    Article  CAS  Google Scholar 

  • Mottram, D.S., B.L. Wedzicha, and A.T. Dodson. 2002. Acrylamide is formed in the Maillard reaction. Nature 419: 448–449.

    Article  PubMed  CAS  Google Scholar 

  • Mucci, L.A. 2005. Acrylamide intake and breast cancer risk in Swedish women. JAMA: The Journal of the American Medical Association. 293: 1326–1327.

    PubMed  CAS  Google Scholar 

  • Mucci, L.A., P.W. Dickman, G. Steineck, H.O. Adami, and K. Augustsson. 2003. Dietary acrylamide and cancer of the large bowel, kidney, and bladder: Absence of an association in a population-based study in Sweden. British Journal of Cancer 88: 84–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mucci, L.A, P. Lindblad, G. Steineck, and H.-O. Adami. 2004. Dietary acrylamide and risk of renal cell cancer. International Journal of Cancer. Journal International du Cancer 109: 774–776.

  • OEHHA. 2016. Acrylamide. California Office of Environmental Health Hazard Assessment. http://oehha.ca.gov/proposition-65/chemicals/acrylamide. Accessed 6/27/16.

  • Parzefall, W. 2008. Minireview on the toxicity of dietary acrylamide. Food and Chemical Toxicology 46: 1360–1364.

    Article  PubMed  CAS  Google Scholar 

  • Pedreschi, F., M.S. Mariotti, and K. Granby. 2014. Current issues in dietary acrylamide: Formation, mitigation and risk assessment. Journal of the Science of Food and Agriculture 94: 9–20.

    Article  PubMed  CAS  Google Scholar 

  • Pelucchi, C., S. Franceschi, F. Levi, D. Trichopoulos, C. Bosetti, E. Negri, and C. La Vecchia. 2003. Fried potatoes and human cancer. International Journal of Cancer. Journal International du Cancer 105: 558–560.

  • Pelucchi, C., C. Galeone, F. Levi, E. Negri, S. Franceschi, R. Talamini, C. Bosetti, A. Giacosa, and C. La Vecchia. 2006. Dietary acrylamide and human cancer. International Journal of Cancer. Journal International du Cancer 118: 467–471.

  • Pelucchi, C., C. La Vecchia, C. Bosetti, P. Boyle, and P. Boffetta. 2011. Exposure to acrylamide and human cancer-a review and meta-analysis of epidemiologic studies. Annals of Oncology 22: 1487–1499.

    Article  PubMed  CAS  Google Scholar 

  • Powers, S.J., D.S. Mottram, A. Curtis, and N.G. Halford. 2013. Acrylamide concentrations in potato crisps in Europe from 2002 to 2011. Food Additives and Contaminants Part A. 30: 1493–1500.

    Article  CAS  Google Scholar 

  • Rice, J.M. 2005. The carcinogenicity of acrylamide. Mutation Research 580: 3–20.

    Article  PubMed  CAS  Google Scholar 

  • Rommens, C.M., H. Yan, K. Swords, C. Richael, and J. Ye. 2008. Low-acrylamide French fries and potato chips. Plant Biotechnology Journal 6: 843–853.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosyara, U.R., W.S. De Jong, D.S. Douches, and J.B. Endelman. 2016. Software for genome-wide association studies in autopolyploids and its application to potato. The Plant Genome. Journal 9. https://doi.org/10.3835/plantgenome2015.08.0073.

  • Sayre, R.N., M. Nonaka, and M.L. Weaver. 1975. French fry quality related to specific gravity and solids content variation among potato strips within the same tuber. American Potato Journal 52: 73–82.

    Article  Google Scholar 

  • Stadler, R.H., I. Blank, N. Varga, F. Robert, J. Hau, P.A. Guy, M.C. Robert, and S. Riediker. 2002. Acrylamide from Maillard reaction products. Nature 419: 449–450.

    Article  PubMed  CAS  Google Scholar 

  • Stich, B., C. Urbany, P. Hoffmann, and C. Gebhardt. 2013. Population structure and linkage disequilibrium in diploid and tetraploid potato revealed by genome-wide high-density genotyping using the SolCAP SNP array. Plant Breeding 132: 718–724.

    Article  CAS  Google Scholar 

  • Tareke, E., P. Rydberg, P. Karlsson, S. Eriksson, and M. Tornqvist. 2002. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. Journal of Agricultural and Food Chemistry 50: 4998–5006.

    Article  PubMed  CAS  Google Scholar 

  • Vainio, H. 2003. Acrylamide in heat-processed foods - a carcinogen looking for human cancer? European Journal of Epidemiology 18: 1105–1106.

    Article  PubMed  Google Scholar 

  • Vinci, R.M., F. Mestdagh, and B. de Meulenaer. 2012. Acrylamide formation in fried potato products - present and future, a critical review on mitigation strategies. Food Chemistry 133: 1138–1154.

    Article  CAS  Google Scholar 

  • Waltz, E. 2015. USDA approves next-generation GM potato. Nature Biotechnology 33: 12–13.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., P.C. Bethke, A.J. Bussan, M.T. Glynn, D.G. Holm, F.M. Navarro, R.G. Novy, J.P. Palta, M.J. Pavek, G.A. Porter, V.R. Sathuvalli, A.L. Thompson, P.J. Voglewede, J.L. Whitworth, D.I. Parish, and J.B. Endelman. 2016. Acrylamide-forming potential and agronomic properties of elite US potato germplasm from the National fry Processing Trial. Crop Science 56: 30–39.

    Article  CAS  Google Scholar 

  • Wang, Y., L.B. Snodgrass, P.C. Bethke, A.J. Bussan, D.G. Holm, R.G. Novy, M.J. Pavek, G.A. Porter, C.J. Rosen, V. Sathuvalli, A.L. Thompson, M.T. Thornton, and J.B. Endelman. 2017. Reliability of measurement and genotype x environment interaction for potato specific gravity. Crop Science 57: 1966–1972.

    Article  Google Scholar 

  • Weisshaar, R. 2004. Acrylamide in heated potato products - analytics and formation routes. European Journal of Lipid Science and Technology 106: 786–792.

    Article  CAS  Google Scholar 

  • Wiberley-Bradford, A.E., J.S. Busse, J. Jiang, and P.C. Bethke. 2014. Sugar metabolism, chip color, invertase activity, and gene expression during long-term cold storage of potato (Solanum tuberosum) tubers from wild-type and vacuolar invertase silencing lines of Katahdin. BMC Research Notes 7: 801.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wiberley-Bradford, A.E., J.S. Busse, and P.C. Bethke. 2016. Temperature-dependent regulation of sugar metabolism in wild-type and low-invertase transgenic chipping potatoes during and after cooling for low-temperature storage. Postharvest Biology and Technology 115: 60–71.

    Article  CAS  Google Scholar 

  • Wilson, K.M., L.A. Mucci, E. Cho, D.J. Hunter, W.Y. Chen, and W.C. Willett. 2009. Dietary acrylamide intake and risk of premenopausal breast cancer. American Journal of Epidemiology 169: 954–961.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson, K.M., L.A. Mucci, B.A. Rosner, and W.C. Willett. 2010. A prospective study on dietary acrylamide intake and the risk for breast, endometrial, and ovarian cancers. Cancer Epidemiology, Biomarkers & Prevention 19: 2503–2515.

    Article  CAS  Google Scholar 

  • Zhu, X., C. Richael, P. Chamberlain, J.S. Busse, A.J. Bussan, J. Jiang, and P.C. Bethke. 2014. Vacuolar invertase gene silencing in potato (Solanum tuberosum L.) improves processing quality by decreasing the frequency of sugar-end defects. PLoS One 9: e93381.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu, X., H. Gong, Q. He, Z. Zeng, J.S. Busse, W. Jin, P.C. Bethke, and J. Jiang. 2015. Silencing of vacuolar invertase and asparagine synthetase genes and its impact on acrylamide formation of fried potato products. Plant Biotechnology Journal 14: 709–718.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for the SCRI acrylamide project was provided by USDA-NIFA-SCRI Grant No. 2011-51181-30629 (Improved Breeding and Variety Evaluation Methods to Reduce Acrylamide Content and Increase Quality in Processed Potato Products). Special thanks are offered to John Keeling of the National Potato Council and Tim O’Connor (formerly with the US Potato Board) for guidance and encouragement as the project was being developed. Members of the SCRI acrylamide Advisory Committee, agronomists and food processing experts from companies that manufacture potato chips and French fries, representatives of potato growers from across the US, and experts from quick service restaurants contributed to this project through their participation in multiple meetings and conference calls. Their commitment of time, expert advice and constructive feedback was extremely important to this project and is gratefully acknowledged. Special thanks are given to the potato breeders who contributed advanced selections to the NFPT, NCPT, SCRI agronomic trial and other research trials that were key components of the SCRI acrylamide project. We would also like to thank David Parish and Paul Voglewede at AIS Consulting for their assistance in organizing and reporting variety evaluation efforts. Finally, we express our appreciation to Marty Glynn and Darrin Haagenson and the staff at the USDA Sugarbeet and Potato worksite in East Grand forks MN for their essential contribution to the NFPT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul C. Bethke.

Ethics declarations

Dedication

We dedicate this manuscript to Marty Glynn on the occasion of his retirement from USDA after 44 years of tireless service to the US potato industry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bethke, P.C. Progress and Successes of the Specialty Crop Research Initiative on Acrylamide Reduction in Processed Potato Products. Am. J. Potato Res. 95, 328–337 (2018). https://doi.org/10.1007/s12230-018-9660-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-018-9660-2

Keywords

Navigation