Advertisement

American Journal of Potato Research

, Volume 95, Issue 5, pp 526–538 | Cite as

Efficacy of Seed Aging and Gibberellin Treatments for Manipulating Apical Dominance, Tuber Set and Size Distribution of cv. Shepody

  • Cody J. Dean
  • Lisa O. Knowles
  • N. Richard KnowlesEmail author
Article

Abstract

The cultivar Shepody has excellent early processing qualities and produces above average tuber yields but sets relatively few tubers that often become excessively large relative to market demand. Optimizing tuber set and size of Shepody for seed and frozen processing markets currently entails adjusting in-row spacing and vine kill date. However, arresting tuber growth by vine killing for size control sacrifices yield potential. Aging seed by storing at 12, 22, and 32°C for 80-, 450-, and 900-degree days, or gibberellin (GA) treatments, were evaluated as more direct approaches for modulating stem number (apical dominance), tuber set, and size distribution relationships. Shepody proved to be inherently resistant to high temperature-induced age-priming treatments. In contrast to other cultivars studied previously, age-priming Shepody seed during storage had no effect on plant emergence and the resulting increases in stem number, tuber set, and associated decreases in average tuber weight were marginal. By contrast, GA applied as seed dip or spray effectively hastened plant emergence, reduced apical dominance, increased tuber set, and decreased average tuber size. The magnitude of these GA-induced effects depended on concentration and application technique (seed dip versus spray). For frozen processing, GA applied as a seed dip at 1 mg L-1 added an additional tuber per plant and decreased average tuber size by 15% without affecting U.S. No. 1 tuber yields and gross returns; however, 2 and 3 mg L-1 GA decreased U.S. No. 1 tuber yields and crop value by an average of 16 and 14%, respectively. Spray applications of 2–6 mg L-1 GA also reduced U.S. No. 1 tuber yield and frozen processing value. Conversely, the increase in tuber set (1.5 tubers plant-1) and associated 25% reduction in average tuber weight induced by 2 mg L-1 GA applied as either dip or spray increased gross crop values on a seed contract by 25 and 38%, respectively. The differential efficacies of dip versus spray applications of GA on tuber set and size distribution were likely attributable to differences in GA deposition on the seed. Applying low concentrations of GA to cut seed of Shepody as either a dip (1–2 mg L-1) or spray (2 mg L-1) effectively modulated tuber set and size to significantly increase gross returns for seed, and to better satisfy the needs of processors for more moderate size tubers.

Keywords

Solanum tuberosumSeed physiological age Gibberellic acid Stem number Tuber number Crop value 

Resumen

La variedad Shepody tiene excelentes cualidades para proceso temprano y produce rendimiento de tubérculos por encima del promedio, pero forma relativamente pocos tubérculos que a menudo son excesivamente grandes en relación a la demanda del mercado. La optimización de la formación y tamaño de Shepody para semilla y para mercados de procesamiento congelado actualmente implica ajustes en espaciamiento en el surco y en fechas de quema del follaje. No obstante, la disminución del crecimiento del tubérculo mediante la quema del follaje para controlar el tamaño sacrifica el rendimiento potencial. Se evaluaron tratamientos de envejecimiento de la semilla mediante el almacenamiento a 12, 22, y 32°C durante 80-, 450-, y 900- días grado, o con giberelina (GA) como enfoques más directos para modular las relaciones entre el número de tallos (dominancia apical), amarre de tubérculo y distribución de tamaños. Shepody demostró ser inherentemente resistente a los tratamientos de inducción de iniciación de envejecimiento por temperatura. En contraste con otras variedades estudiadas previamente, la semilla de Shepody con iniciación de envejecimiento durante el almacenamiento no tuvo efecto en la emergencia de la planta y en los aumentos resultantes en número de tallos y amarre de tubérculos, y fueron marginales las disminuciones asociadas en el peso promedio de tubérculo. En contraste, la aplicación de GA por inmersión de la semilla o como aspersión aceleró efectivamente la emergencia de la planta, redujo la dominancia apical, aumentó el amarre de tubérculo y disminuyó el promedio de su tamaño. La magnitud de estos efectos inducidos por el GA, dependieron de la concentración y técnica de aplicación (inmersión de semilla contra aspersión). Para procesamiento congelado, el GA aplicado en inmersión a 1 mg L–1 agregó un tubérculo adicional por planta y disminuyó el promedio del tamaño del tubérculo en un 15% sin afectar los rendimientos de tubérculo U. S. No. 1 y la recuperación bruta; no obstante, 2 y 3 mg L–1 de GA disminuyeron el rendimiento de tubérculos U. S. No. 1 y el valor del cultivo en un promedio de 16 y 14%, respectivamente. Las aplicaciones por aspersión de 2–6 mg L–1 de GA también redujeron el rendimiento de tubérculo U. S. No. 1 y el valor del procesamiento congelado. A la inversa, el aumento en el amarre de tubérculo (1.5 tubérculos por planta–1) y la asociación en la reducción del 25% en el promedio de peso de tubérculo inducida por 2 mg L–1 de GA aplicado ya fuera por inmersión o aspersión, incrementó los valores brutos del cultivo en un contrato de semilla en 25 y 38%, respectivamente. Las eficacias diferenciales de las aplicaciones de GA en inmersión contra la aspersión en el amarre de tubérculo y distribución del tamaño fueron atribuibles probablemente a las diferencias en la deposición del GA en la semilla. La aplicación de bajas concentraciones de GA a semilla cortada de Shepody ya fuera como inmersión (1–2 mg L–1) o en aspersión (2 mg L–1), moduló efectivamente el amarre y tamaño del tubérculo a aumento significativo de recuperación bruta para semilla, y para una mejor satisfacción de las necesidades de los procesadores respecto a tamaño más moderado de tubérculos.

Notes

Acknowledgments

Financial support was provided by the Washington State Potato Commission, Northwest Potato Research Consortium, and the USDA Specialty Crop Block Grant program.

References

  1. Arpiwi, N.L. 2003. The application of novel methods for increasing the yield of small round seed potatoes (Solanum tuberosum L.) varieties Atlantic and granola. MS Thesis, University of Western Australia: School of Plant Biology.Google Scholar
  2. Arsenault, W.J., D.A. LeBlanc, G.C.C. Tai, and P. Boswall. 2001. Effects of nitrogen application and seedpiece spacing on yield and tuber size distribution in eight potato cultivars. American Journal of Potato Research 78: 301–309.CrossRefGoogle Scholar
  3. Baritelle, A.L., and G.M. Hyde. 1999. Effect of tuber size on failure properties of potato tissue. Transactions of ASAE 42: 159–161.CrossRefGoogle Scholar
  4. Blauer, J.M., L.O. Knowles, and N.R. Knowles. 2013. Manipulating stem number, tuber set and size distribution in specialty potato cultivars. American Journal of Potato Research 90: 470–496.CrossRefGoogle Scholar
  5. Bohl, W.H., P. Nolte, G.E. Kleinkopf, M.K. Thornton. 1995. Potato seed management: Seed size and age. University of Idaho extension bulletin. Cooperative extension system.Google Scholar
  6. Bolotova, Y., and P.E. Patterson. 2009. An analysis of contracts in the Idaho processing-potato industry. Journal of Food Research 40: 32–38.Google Scholar
  7. Brook, R.C. 1996. The physics of potato tuber bruising. In Potato bruising: How and why emphasizing black spot bruise, ed. Roger C. Brook. Haslett, MI: Running Water Publishing.Google Scholar
  8. Bussan, A.J., P.D. Mitchell, M.E. Copas, and M.J. Drilias. 2007. Evaluation of the effect of density on potato yield and tuber size distribution. Crop Science 47: 2462–2472.CrossRefGoogle Scholar
  9. Caldiz, D.O. 2009. Physiological age research during the second half of the twentieth century. Potato Research 52: 295–304.CrossRefGoogle Scholar
  10. Dean, C.J. 2018. Auxin modulates GA-induced effects on growth and yield of potato (Solanum tuberosum L.) to increase raw product recovery for frozen processing. In: Dean C.J., Manipulating apical dominance, tuber set, size, and shape to optimize yield and quality of potato (Solanum tuberosum L.). MS thesis. Washington State University, Pullman, WA.Google Scholar
  11. Feustel, I.C., and R.W. Kueneman. 1959. Frozen potato products. In Potato processing, ed. W.F. Talburt and O. Smith, 279–307. Westport: The AVI Publishing Company Inc.Google Scholar
  12. Gould, W.A. 1999. Frozen French fries and other frozen potato products. In Potato production, processing, and technology, 105–109. Maryland: CTI Publications.CrossRefGoogle Scholar
  13. Herman, D.J., L.O. Knowles, and N.R. Knowles. 2016. Differential sensitivity of genetically related potato cultivars to treatments designed to alter apical dominance, tuber set and size distribution. American Journal of Potato Research 93: 331–349.CrossRefGoogle Scholar
  14. Iritani, W.M. 1968. Factors affecting physiological ageing (degeneration) of potato tubers used as seed. American Journal of Potato Research 45: 111–116.CrossRefGoogle Scholar
  15. Iritani, W.M., R. Thornton, L. Weller, and G. O’Leary. 1972. Relationships of seed size, spacing, stem numbers to yield of russet Burbank potatoes. American Journal of Potato Research 49: 463–469.CrossRefGoogle Scholar
  16. Jansky, S.H., and D.M. Thompson. 1990. Expression of hollow heart in segregating tetraploid potato families. American Potato Journal 67: 695–703.CrossRefGoogle Scholar
  17. Knowles, N.R., and G.I. Botar. 1992. Effect of altering the physiological age of potato seed-tubers in the fall on subsequent production in a short-season environment. Canadian Journal of Plant Science 72: 275–287.CrossRefGoogle Scholar
  18. Knowles, N.R., and L.O. Knowles. 2004. Predicting tuber set & size development from stem numbers. Potato Progress. Vol. 9 No. 9.Google Scholar
  19. Knowles, N.R., and L.O. Knowles. 2006. Manipulating stem number, tuber set, and yield relationships for northern- and southern-grown potato seed lots. Crop Science 46: 284–296.CrossRefGoogle Scholar
  20. Knowles, N.R., and L.O. Knowles. 2011. Stem number, tuber set & size distribution relationships for Russet Norkotah selections (CO-3, CO-8) in the Columbia Basin. Potato Progress. Vol. 11 No. 8.Google Scholar
  21. Knowles, L.O., and N.R. Knowles. 2016. Optimizing tuber set and size distribution for potato seed (Solanum tuberosum L.) expressing varying degrees of apical dominance. Journal of Plant Growth Regulation 35: 574–585.CrossRefGoogle Scholar
  22. Lang, N.S., R.G. Stevens, R.E. Thornton, W.L. Pan, and S. Victory. 1999. Nutrient management guide: Central Washington irrigated potatoes. Pullman: Washington State University Cooperative Extension.Google Scholar
  23. Lenfesty C.M. 1967. Soil survey: Adams County, Washington. Washington D.C.Google Scholar
  24. Love, S.L., and A. Thompson-Johns. 1999. Seed piece spacing influences yield, tuber size distribution, stem and tuber density, and net returns of three processing potato cultivars. HortScience 34: 629–633.Google Scholar
  25. Mikitzel, L.J. 1993. Influencing seed tuber yield of ranger russet and Shepody potatoes with gibberellic acid. American Potato Journal 70: 667–676.CrossRefGoogle Scholar
  26. Mikitzel, L.J. 1995. Daminozide applied to the foliage of three potato cultivars increased tuber eye number. American Potato Journal 72: 177–183.CrossRefGoogle Scholar
  27. NASS (National Agricultural Statistics Services), United States Department of Agriculture. 2018. https://www.nass.usda.gov/Statistics_by_State/Washington/Publications/Potatoes/2017/PT09_01.pdf
  28. Nelson, D.C., and M.C. Thoreson. 1986. Relationships between tuber size and time of harvest to hollow heart initiation in dryland Norgold russet potatoes. American Potato Journal 63: 155–161.CrossRefGoogle Scholar
  29. O’Brien, P.J., E.J. Allen, J.N. Bean, R.L. Griffith, S.A. Jones, and J.L. Jones. 1983. Accumulated day-degrees as a measure of physiological age and the relationships with growth and yield in early potato varieties. Journal of Agricultural Science 101: 613–631.CrossRefGoogle Scholar
  30. Pavek, M.J., and N.R. Knowles. 2018. WSU potato cultivar yield and postharvest quality evaluations for 2017. Washington State University Special Report. 102 pp.Google Scholar
  31. Rex, B.L., W.A. Russell, and H.R. Wolfe. 1987. The effect of spacing of seedpieces on yield, quality and economic value for processing of Shepody potatoes in Manitoba. American Potato Journal 64: 177–189.CrossRefGoogle Scholar
  32. Rykbost, K.A., and J. Maxwell. 1993. Effects of plant population on the performance of seven varieties in the Klamath Basin of Oregon. American Potato Journal 70: 463–474.CrossRefGoogle Scholar
  33. Spear, R.R., Z.J. Holden, and M.J. Pavek. 2017. Fresh market evaluation of six russet-type potato varieties and four russet Norkotah strains. American Journal of Potato Research 94: 437–448.CrossRefGoogle Scholar
  34. Struik, P.C., A.J. Haverkort, D. Vreugdenhil, C.B. Bus, and R. Dankert. 1990. Manipulation of tuber-size distribution of a potato crop. Potato Research 33: 417–432.CrossRefGoogle Scholar
  35. Struik, P.C., P.E.L. Van Der Putten, D.O. Caldiz, and K. Scholte. 2006. Response of stored potato seed tubers from contrasting cultivars to accumulated day-degrees. Crop Science 46: 1156–1168.CrossRefGoogle Scholar
  36. Van Loon, C.D. 1987. Effect of physiological age on growth vigour of seed potatoes of two cultivars for influence of storage temperature on growth and yield in the field. Potato Research 30: 441–450.CrossRefGoogle Scholar
  37. Walworth, J.L., and D.E. Carling. 2002. Tuber initiation and development in irrigated and non-irrigated potatoes. American Journal of Potato Research 79: 387–395.CrossRefGoogle Scholar
  38. Young, D.A., T.R. Tarn, and H.T. Davies. 1983. Shepody: A long, smooth, white-skinned potato of medium maturity with excellent French fry quality. American Potato Journal 60: 109–114.CrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2018

Authors and Affiliations

  • Cody J. Dean
    • 1
  • Lisa O. Knowles
    • 1
  • N. Richard Knowles
    • 1
    Email author
  1. 1.Postharvest Physiology and Biochemistry Laboratory, Department of HorticultureWashington State UniversityPullmanUSA

Personalised recommendations