Advertisement

American Journal of Potato Research

, Volume 95, Issue 5, pp 513–525 | Cite as

Yield and Nitrogen Use of Irrigated Processing Potato in Response to Placement, Timing and Source of Nitrogen Fertilizer in Manitoba

  • Xiaopeng Gao
  • William S. Shaw
  • Mario Tenuta
  • Darin Gibson
Article
  • 117 Downloads

Abstract

Optimizing nitrogen (N) fertilizer management in irrigated potato (Solanum tuberosum L.) on coarse-textured soils is challenging. The “4R” nutrient stewardship framework of using N fertilizer at the right rate, right source, right placement and right time provides approaches to improve fertilizer use efficiency while maintaining or improving yield. This 3-years replicated field plot study evaluated effects from a series of N fertilization strategies including 10 combinations of sources, placement and timing, as well as fertigation, on irrigated processing potato (cv. Russet Burbank) grown for a total of five site-years in the Province of Manitoba, Canada. Treatments were designed to provide early to late availability of N to the potato crop. Nitrogen was applied to 80% of Provincial N recommendation to increase the likelihood of observing improved fertilizer use efficiency and effects of treatments on yields. Measurements were tuber yield, size distribution, specific gravity, hollow-heart rate, fertilizer apparent N recovery (ANR) and agronomic nitrogen use efficiency (NUE). Results showed differences in yield, quality, ANR and NUE between fertilizer treatments were generally very small or absent. Average tuber marketable yields for fertilizer treatments were significantly greater than those for the unfertilized control (P < 0.001). Split application of urea at planting and hilling, and urea at planting with fertigation occasionally increased tuber marketable yields on sites of coarse textured soils (P < 0.05). Use of polymer-coated urea (ESN) or stabilized urea with inhibitors (SuperU) did not affect yield, quality or N use of potato. Site-year difference (P < 0.001) were apparent for all measures highlighting the importance of soil and climatic conditions on agronomic and environmental effects of N management practices. The results indicate current grower practice of split urea application at planting and hilling and urea at planting following by in-season fertigation are sound. Results indicate growers could shift to the more convenient practice of ESN at planting without reducing yields. Absence of treatment effects suggests N was generally not a limiting factor for the current study, indicating that the current recommendation for potato production in Manitoba over-estimate site-specific crop N needs.

Keywords

4R Apparent N recovery Enhanced efficiency fertilizer Fertigation Irrigation N use efficiency Split 

Resumen

La optimización del manejo de la fertilización con nitrógeno (N) en papa de riego (Solanum tuberosum L.) en suelos de textura gruesa es retadora. El marco de gestión de nutrientes “4R” usando fertilizante N en la dosis correcta, de la fuente correcta, con la colocación correcta y en el tiempo correcto suministra estrategias para mejorar la eficiencia en el uso de fertilizantes mientras se mantiene o se mejora el rendimiento. Este estudio de lotes en el campo repetido en tres años evaluó los efectos de una serie de estrategias de fertilización N, incluyendo 10 combinaciones de fuentes, colocación y tiempos, así como fertirrigación, en papa para proceso de riego (var. Russet Burbank) cultivada para un total de cinco sitios-años, en la provincia de Manitoba, Canadá. Los tratamientos fueron diseñados para proporcionar disponibilidad temprana y tardía de N al cultivo de papa. El N se aplicó a 80% de la recomendación de N de la Provincia, para aumentar la probabilidad de observar mejoramiento en la eficiencia del uso del fertilizante y los efectos de los tratamientos en los rendimientos. Se midió el rendimiento de tubérculo, distribución de tamaños, gravedad específica, el nivel de corazón hueco, la recuperación aparente del fertilizante N (ANR), y la eficiencia en el uso agronómico del nitrógeno (NUE). Los resultados mostraron diferencias en rendimiento y calidad. ANR y NUE entre los tratamientos con fertilizante generalmente fueron muy pequeños o ausentes. El promedio de rendimientos de tubérculo comercial por tratamientos de fertilizante fue significativamente mayor que aquellos del testigo no fertilizado (P < 0.001). La aplicación dividida de urea a la siembra y al aporque, y urea a la siembra con fertirrigación, aumentó ocasionalmente los rendimientos comerciales de tubérculo en sitios de suelos de textura gruesa (P < 0.05). El uso de urea cubierta con polímero o estabilizada con inhibidores (SuperU) no afectó al rendimiento, calidad, o el uso del N en la papa. La diferencia por sitio-año (P < 0.001) fue aparente para todas las mediciones, sobresaliendo la importancia de las condiciones de suelo y clima en los efectos agronómicos y ambientales de las prácticas de manejo del N. Los resultados indican que la práctica común del productor de la aplicación dividida de la urea en la siembra y en el aporque y de urea a la siembra seguida por la fertirrigación en el ciclo del cultivo tienen sentido. Los resultados indican que los productores pueden cambiar a la práctica más conveniente de ESN a la siembra sin reducir los rendimientos. La ausencia del efecto de los tratamientos sugiere que el N no era generalmente un factor limitante para el presente estudio, indicando que la recomendación actual para la producción de papa en Manitoba sobre-estima los requerimientos de N del cultivo específicos por sitio.

Notes

Acknowledgements

This study was funded by the Canadian Horticultural Council Science Cluster II Project of the Agriculture and Agri-Food Canada Growing Forward 2 Program with contributions from Agriculture and Agri-Food Canada, Keystone Potato Producers Association, SimPlot, McCains Foods and Agrium Inc. We would like to thank Mervin Bilous and Brad Sparling from Soil Ecology Lab in University of Manitoba, and staff of CMCDC-Carberry for technical assistance in this study.

References

  1. Bélanger, G.R., J.R. Walsh, J.E. Richards, P.H. Milburn, and N. Ziadi. 2002. Nitrogen fertilization and irrigation affects tuber characteristics of potato cultivars. American Journal of Potato Research 79: 269–279.CrossRefGoogle Scholar
  2. Burton, D.L., B.J. Zebarth, K.M. Gillarn, and J.A. MacLeod. 2008. Effect of split application of fertilizer nitrogen on N2O emissions from potatoes. Canadian Journal of Soil Science 88: 229–239.CrossRefGoogle Scholar
  3. Cambouris, A.N., B.J. Zebarth, M.C. Nolin, and M.R. Laverdiere. 2008. Apparent fertilizer nitrogen recovery and residual soil nitrate under continuous potato cropping: Effect of N fertilization rate and timing. Canadian Journal of Soil Science 88: 813–825.CrossRefGoogle Scholar
  4. Cambouris, A.N., M.St. Luce, B.J. Zebarth, N. Ziadi, C.A. Grant, and I. Perron. 2016. Potato response to nitrogen sources and rates in an irrigated sandy soil. Agronomy Journal 108: 391–401.CrossRefGoogle Scholar
  5. Carter, M.R. 1993. Soil sampling and methods of analysis. Boca Raton: Lewis Publ./CRC Press.Google Scholar
  6. Davidson, B.R., and B.R. Martin. 1965. The relationship between yields on farms and in experiments. Australian Journal of Agricultural Economics 9: 129–140.CrossRefGoogle Scholar
  7. Errebhi, M., C.J. Rosen, S.C. Gupta, and D.E. Birong. 1998. Potato yield response and nitrate leaching as influenced by nitrogen management. Agronomy Journal 90: 10–15.CrossRefGoogle Scholar
  8. Gao, X., M. Tenuta, A. Nelson, B. Sparling, D. Tomasiewicz, R.M. Mohr, and B. Bizimungu. 2013. Effect of nitrogen fertilizer rate on nitrous oxide emission from irrigated potato on a clay loam soil in Manitoba. Canadian Journal of Soil Science 93: 1–11.CrossRefGoogle Scholar
  9. Gao, X., S. Parsonage, M. Tenuta, K. Baron, K. Hanis-Gervais, A. Nelson, D. Tomasiewicz, and R.M. Mohr. 2017. Nitrogen fertilizer management practices to reduce N2O emissions from irrigated processing potato in Manitoba. American Journal of Potato Research 94: 390–402.CrossRefGoogle Scholar
  10. Grant, C.A., G.A. Peterson, and C.A. Campbell. 2002. Nutrient considerations for diversified cropping systems in the northern Great Plains. Agronomy Journal 94: 186–198.CrossRefGoogle Scholar
  11. Hagin, J., and A. Lowengart. 1996. Fertigation for minimizing environmental pollution by fertilizers. Fertilizer Research 43: 5–7.CrossRefGoogle Scholar
  12. Halvorson, A.D., C.S. Snyder, A.D. Blaylock, and S.J. Del Grosso. 2014. Enhanced-efficiency nitrogen fertilizers: Potential role in nitrous oxide emission mitigation. Agronomy Journal 106: 715–722.CrossRefGoogle Scholar
  13. IFA. 2009. The global “4R” nutrient stewardship framework: Developing fertilizer best management practices for delivering economic, Social and Environmental Benefits. Paper drafted by the IFA Task Force on Fertilizer Best Management Practices. International Fertilizer Industry Association, Paris, France.Google Scholar
  14. Kelling, K.A., R.P. Wolkowski, and M.D. Ruark. 2011. Potato response to nitrogen form and nitrification inhibitors. American Journal of Potato Research 88: 459–469.CrossRefGoogle Scholar
  15. Kelling, K.A., R.F. Hensler, and P.E. Speth. 2015. Importance of early-season nitrogen rate and placement to russet Burbank potatoes. American Journal of Potato Research 92: 502–510.CrossRefGoogle Scholar
  16. Kleinschmidt, G.D., G.E. Kleinkopf, D.T. Westermann, and J.C. Zalewski. 1984. Specific gravity of potatoes. Cis 609, University of Idaho, Moscow, ID.Google Scholar
  17. McPharlin, I.R., and R.A. Lancaster. 2010. Yield and quality response of crisping potatoes (Solanum tuberosum L.) to applied nitrogen. Journal of Plant Nutrition 33: 1195–1215.CrossRefGoogle Scholar
  18. Mills, G.F., and P. Haluschak. 1995. Soils of the Manitoba crop diversification center. Special Report 95–1. Manitoba Soil Resource: Winnipeg.Google Scholar
  19. Mohr, R.M., and D.J. Tomasiewicz. 2012. Effect of rate and timing of potassium chloride application on the yield and quality of potato (Solanum tuberosum L. ‘russet Burbank’). Canadian Journal of Plant Science 92: 783–794.CrossRefGoogle Scholar
  20. O'Dell, J.W. 1993. Determination of Total Kjeldahl nitrogen by semi-automated colorimetry. Washigton: United States Environmental Protection Agency.Google Scholar
  21. Parker, C.J., M.K.V. Carr, N.J. Jarvis, M.T.B. Evans, and V.H. Lee. 1989. Effects of subsoil loosening and irrigation on soil physical properties, root distribution and water uptake of potatoes (Solanum tuberosum). Soil Tillage Research 13: 267–285.CrossRefGoogle Scholar
  22. Statistics Canada. 2016. CANSIM (database). Table 001–0014: area production and farm value of potatoes. Accessed 11 Sept 2017.Google Scholar
  23. Statistics Canada. 2017. CANSIM (database). Table 001–0014: Area, production and farm value of potatoes. Accessed 11 Sept 2017.Google Scholar
  24. Tan, X., T. Guo, S. Song, P. Zhang, X. Zhang, and C. Zhao. 2016. Balanced fertilizer management strategy enhances potato yield and marketing quality. Agronomy Journal 108: 2235–2244.CrossRefGoogle Scholar
  25. Trenkel, M.E. 2010. Slow- and controlled-release and stabilized fertilizers: An option for enhancing nutrient use efficiency in agriculture. Paris: Int. Fert. Assoc.Google Scholar
  26. Vendrell, P.F., F.M. Hons, and D. Bordovsky. 1981. Effects of nitrification inhibitor on nitrate leaching losses and yield of Irish potatoes. In Agronomy abstracts, p. 192. American Society of Agronomy, Madison, Wisconsin.Google Scholar
  27. Venterea, R.T., J.A. Coulter, and M.S. Dolan. 2016. Evaluation of intensive “4R” strategies for decreasing nitrous oxide emissions and nitrogen surplus in rainfed corn. Journal of Environmental Quality 45: 1186–1195.CrossRefPubMedGoogle Scholar
  28. Webster, C.P., P.R. Poulton, and K.W.T. Goulding. 1999. Nitrogen leaching from winter cereals grown as part of a 5-years ley-arable rotation. European Journal of Agronomy 10: 99–109.CrossRefGoogle Scholar
  29. Zebarth, B.J., and P.H. Milburn. 2003. Spatial and temporal distribution of soil inorganic nitrogen concentration in potato hills. Canadian Journal of Soil Science 83: 183–195.CrossRefGoogle Scholar
  30. Zebarth, B.J., and C.J. Rosen. 2007. Research perspective on nitrogen BMP development for potato. American Journal of Potato Research 84: 3–18.CrossRefGoogle Scholar
  31. Zebarth, B.J., Y. Leclerc, and G. Moreau. 2004. Rate and timing of nitrogen fertilization of russet Burbank potato: Nitrogen use efficiency. Canadian Journal of Plant Science 84: 845–854.CrossRefGoogle Scholar
  32. Zebarth, B.J., C.F. Drury, N. Tremblay, and A.N. Cambouris. 2009. Opportunities for improved fertilizer nitrogen management in production of arable crops in eastern Canada: A review. Canadian Journal of Soil Science 89: 113–132.CrossRefGoogle Scholar
  33. Zebarth, B.J., E. Snowdon, D.L. Burton, C. Goyer, and R. Dowbenko. 2012. Controlled release fertilizer product effects on potato crop response and nitrous oxide emissions under rain-fed production on a medium-textured soil. Canadian Journal of Soil Science 92: 759–769.CrossRefGoogle Scholar
  34. Ziadi, N., C.A. Grant, N. Samson, J. Nyiraneza, G. Bélanger, and L.E. Parent. 2011. Efficiency of controlled-release urea for a potato production system in Quebec, Canada. Agronomy Journal 103: 60–66.CrossRefGoogle Scholar
  35. Zvomuya, F., C.J. Rosen, M.P. Russelle, and S.C. Gupta. 2003. Nitrate leaching and nitrogen recovery following application of polyolefin-coated urea to potato. Journal of Environmental Quality 32: 480–489.CrossRefPubMedGoogle Scholar

Copyright information

© The Potato Association of America 2018

Authors and Affiliations

  1. 1.Department of Soil ScienceUniversity of ManitobaWinnipegCanada
  2. 2.State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina
  3. 3.Gaia Consulting LtdPortage la PrairieCanada

Personalised recommendations