Skip to main content
Log in

Potato Tuber Greening: a Review of Predisposing Factors, Management and Future Challenges

  • Review
  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Greening is a major cause of quality loss in potato tubers. As underground stems, potato tubers are non-photosynthetic plant organs that lack photosynthetic machinery. However, after light exposure, amyloplasts convert to chloroplasts in tuber peripheral cell layers, which cause the accumulation of the green photosynthetic pigment, chlorophyll. Tuber greening can be impacted by genetic, cultural, physiological and environmental factors including planting depth, tuber physiological age, temperature, atmospheric oxygen levels, and lighting conditions. Numerous studies have been devoted to understand and control this costly defect for the potato industry. This review brings together the available knowledge on light-induced greening, from causes to solutions and suggestions on further research with a focus on identifying the underlying mechanisms of tuber greening.

Resumen

El enverdecimiento es una de las principales causas de la pérdida de calidad en los tubérculos de papa. Como tallos subterráneos, los tubérculos de papa son órganos no fotosintéticos de la planta que carecen de la maquinaria fotosintética. No obstante, después de la exposición a la luz, los amiloplástos se convierten en cloroplástos en las capas de células periféricas del tubérculo, lo que causa la acumulación del pigmento verde fotosintético, la clorofila. El enverdecimiento del tubérculo puede ser impactado por factores genéticos, culturales, fisiológicos y ambientales, incluyendo la profundidad de la siembra, edad fisiológica del tubérculo, temperatura, niveles de oxígeno atmosférico, y condiciones de luminosidad. Numerosos estudios se han enfocado en entender y controlar este costoso defecto para la industria de la papa. Esta revisión junta el conocimiento disponible en el verdeo inducido por la luz, de causas a soluciones y sugerencias en investigación futura, con un enfoque en la identificación de los mecanismos subyacentes del enverdecimiento del tubérculo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akeley, R.V., G.V.L. Houghland, and A.E. Schark. 1962. Genetic differences in potato tuber greening. American Journal of Potato Research 39: 409–417.

    Article  Google Scholar 

  • Andress, E., K. Delaplane, and G. Schuler. 1998. Food irradiation. Georgia Cooperative Extension Service, College of Agricultural and Environmental Sciences, University of Georgia.

  • Anstis, P.J.P., and D.H. Northcote. 1973. Development of chloroplasts from amyloplasts in potato tuber discs. New Phytologist 72: 449–463.

    Article  Google Scholar 

  • Arteca, R.N. 1982. Calcium infiltration inhibits greening in Katahdin potatoes. Hortscience 77: 79.

    Google Scholar 

  • Ashley, B.C., P.T. Birchfield, B.V. Chamberlain, R.S. Kotwal, S.F. McClellan, S. Moynihan, S.B. Patni, S.A. Salmon, and W.W. Au. 2004. Health concerns regarding consumption of irradiated food. International Journal of Hygiene and Environmental Health 207: 493–504.

    Article  CAS  PubMed  Google Scholar 

  • Bamberg, J., M. Moehninsi, R. Navarre, and J. Suriano. 2015. Variation for tuber greening in the diploid wild potato Solanum microdontum. American Journal of Potato Research 92: 435–443.

    Article  Google Scholar 

  • Banks, N.H. 1985. Coating and modified atmosphere effects on potato tuber greening. The Journal of Agricultural Science 105: 59–62.

    Article  Google Scholar 

  • Birch, P.R.J., G. Bryan, B. Fenton, E.M. Gilroy, I. Hein, J.T. Jones, A. Prashar, M.A. Taylor, L. Torrance, and I.K. Toth. 2012. Crops that feed the world 8: Potato: Are the trends of increased global production sustainable? Food Security 4: 477–508.

    Article  Google Scholar 

  • Bohl, W.H., and S.L. Love. 2005. Effect of planting depth and hilling practices on total, U.S. no. 1, and field greening tuber yields. American Journal of Potato Research 82: 441–450.

    Article  Google Scholar 

  • Braun, H., P.C.R. Fontes, C. Busato, P.R. Cecon, F.S. Coelho, and M.C.C. Silva. 2010. Effect of nitrogen rates and days of light exposure on greening evaluated by visual scale and chlorophyll meter of tubers of potato cultivars. International. Journal of Food, Agriculture and Environment 8: 933–938.

    Google Scholar 

  • Brown, E., and W. Riley. 1976. Greening of potato tubers: Varietal response to controlled exposure to light. Journal of the National Institute of agricultural. Botany 14: 70–76.

    Google Scholar 

  • Buck, R.W., and R.V. Akeley. 1967. Effect of maturity, storage temperature, and storage time on greening of potato tubers. American Journal of Potato Research 44: 56–58.

    Article  Google Scholar 

  • Burton, W.G. 1974. Requirements of the users of ware potatoes. Potato Research 17: 374–409.

    Article  Google Scholar 

  • Butcher, H. 1978. Total glycoalkaloids and chlorophyll in potato cultivars bred in New Zealand. New Zealand Journal of Experimental Agriculture 6: 127–130.

    Article  CAS  Google Scholar 

  • Chang, H.Y. 2013. Light-induced glycoalkaloid and chlorophyll synthesis in potato tubers: Cultivar differences and strategies for mitigation. UC-Davis: MS thesis.

    Google Scholar 

  • Corbo, M., D. Campaniello, B. Speranza, A. Bevilacqua, M. Sinigaglia. 2015. Non-conventional tools to preserve and prolong the quality of minimally-processed fruits and vegetables. Coatings 5: 931–961.

  • Dale, M.F.B., D.W. Griffiths, and D. Todd. 1993. Glycoalkaloid increase in Solanum tuberosum on exposure to light. Annals of Applied Biology 123: 411–418.

    Article  CAS  Google Scholar 

  • Dao, L., and M. Friedman. 1994. Chlorophyll, chlorogenic acid, glycoalkaloid, and protease inhibitor content of fresh and green potatoes. Journal of Agricultural and Food Chemistry 42: 633–639.

    Article  CAS  Google Scholar 

  • Diehl, J.F. 2002. Food irradiation – Past, present and future. Radiation Physics and Chemistry 63: 211–215.

    Article  CAS  Google Scholar 

  • Edwards, E.J. 1997. The accumulation of chlorophylls and glycoalkaloids in stored tubers. PhD thesis: Nottingham Trent University.

    Google Scholar 

  • Edwards, E.J., and A.H. Cobb. 1997a. Effect of temperature on glycoalkaloid and chlorophyll accumulation in potatoes (Solanum tuberosum L. cv. King Edward) stored at low photon flux density, including preliminary modeling using an artificial neural network. Journal of Agricultural and Food Chemistry 45: 1032–1038.

    Article  CAS  Google Scholar 

  • Edwards, E.J., and A.H. Cobb. 1997b. Is there a link between greening and light enhanced glycoalkaloid accumulation in potato (Solanum tuberosum L.) tubers? The. Journal of the Science of Food and Agriculture 76: 327–333.

    Article  Google Scholar 

  • Eie, T., and H. Larsen. 2012. The effect of packaging light barrier on greening and solanine formation in Sava cultivar potatoes (Solanum tuberosum L.) stored at 5 and 15°C under fluorescent light. Proceedings, eighteenth IAPRI world packaging conference 149–155.

  • Evans, J.R. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78: 9–19.

    Article  PubMed  Google Scholar 

  • FAO 2008. International year of the potato. http://www.fao.org/potato-2008. Accessed 26 January 2017.

  • FAO 2017. FAOSTAT. http://www.fao.org/faostat/en/#data/QC. Accessed 26 January 2017.

  • Firman, D.M., and E.J. Allen. 1989. Relationship between light interception, ground cover and leaf area index in potatoes. Journal of Agricultural Science 113: 355–359.

    Article  Google Scholar 

  • Folsom, D. 1947. Permanence of greening of potato tubers. American Journal of Potato Research 24: 336–340.

    Article  Google Scholar 

  • Forsyth, F.R., and C.A. Eaves. 1968. Greening of potatoes: About a cure. Food Technology 22: 48–51.

    Google Scholar 

  • French-Brooks, S. J. Pritchard, J. Lee, C.W. Tao, P. Burgess, E. Allchurch, A. Campbell, and R. Gwinn. 2012. Reducing supply chain and consumer potato waste. WRAP, Final Report. http://www.wrap.org.uk. Accessed 8 February 2017.

  • Friedman, M. 2006. Potato glycoalkaloids and metabolites: Roles in the plant and in the diet. Journal of Agricultural and Food Chemistry 54: 8655–8681.

    Article  CAS  PubMed  Google Scholar 

  • Friedman, M., G. McDonald, and M. Filadelfi-Keszi. 1997. Potato glycoalkaloids: Chemistry, analysis, safety, and plant physiology. Critical Reviews in Plant Sciences 16: 55–132.

    Article  CAS  Google Scholar 

  • Ginzberg, I., J.G. Tokuhisa, and R.E. Veilleux. 2009. Potato steroidal glycoalkaloids: Biosynthesis and genetic manipulation. Potato Research 52: 1–15.

    Article  CAS  Google Scholar 

  • Griffiths, D.W., M.F.B. Dale, and H. Bain. 1994. The effect of cultivar, maturity and storage on photo-induced changes in the total glycoalkaloid and cholorophyll contents of potatoes (Solanum tuberosum). Plant Science 98: 103–109.

    Article  CAS  Google Scholar 

  • Grunenfelder, L. 2005. Physiological studies of light-induced greening in fresh market potatoes. M.S. Thesis: Washington State University, Pullman.

    Google Scholar 

  • Grunenfelder, L., L.K. Hiller, and N.R. Knowles. 2006. Color indices for the assessment of chlorophyll development and greening of fresh market potatoes. Postharvest Biology and Technology 40: 73–81.

    Article  CAS  Google Scholar 

  • Gull, D.D., and F.M.R. Isenberg. 1958. Light burn and off-flavour development in potato tubers exposed to fluorescent lights. Proceedings of the. American Society for Horticultural Science. 71: 446–454.

    CAS  Google Scholar 

  • Gull, D.D., and F.M.R. Isenberg. 1960. Chlorophyll and solanine content and distribution in four varieties of potato tubers. Proceedings of the. American Society for Horticultural Science. 75: 545–556.

    CAS  Google Scholar 

  • Hokmalipour, S., and M.H. Darbandi. 2011. Effects of nitrogen fertilizer on chlorophyll content and other leaf indicate in three cultivars of maize (Zea mays L.). World Applied Sciences Journal 15: 1780–1785.

  • Hortensteiner, S., and B. Krautler. 2011. Chlorophyll breakdown in higher plants. Biochimica et Biophysica Acta 1807: 977–988.

    Article  CAS  PubMed  Google Scholar 

  • Howard, F.D., M. Yarnaguchi, and H. Timm. 1957. Effect of illumination and waxing on the chlorophyll development in scrubbed white rose potato tubers. American Journal of Potato Research 34: 324–329.

    Article  CAS  Google Scholar 

  • Jadhav, S.J., and D.K. Salunkhe. 1974. Effects of certain chemicals on photo- induction of chlorophyll and glycoalkaloid synthesis and on sprouting of potato tubers. Canadian Institute of Food Science and Technology Journal 7: 178–182.

    Article  CAS  Google Scholar 

  • Jadhav, S.J., and D.K. Salunkhe. 1975. Formation and control of chlorophyll and glycoalkaloids in tubers of Solanum tuberosum L. potatoes and evaluation of glycoalkaloid toxicity. Advances in Food Research 21: 307–354.

    Article  CAS  PubMed  Google Scholar 

  • Jakuczun, H., and E. Zimnoch-Guzowska. 2006. Inheritance of tuber greening under light exposure in diploid potatoes. American Journal of Potato Research 83: 211–221.

    Article  Google Scholar 

  • Jarvis, P., and E. Lopez-Juez. 2013. Biogenesis and homeostasis of chloroplasts and other plastids. Nature Reviews Molecular Cell Biology 14: 787–802.

    Article  CAS  PubMed  Google Scholar 

  • Kaaber, L. 1993. Glycoalkaloids, green discoloration and taste development during storage of some potato varieties (Solanum tuberosum L.). Norwegian Journal of Agricultural Sciences 7: 221–229.

    Google Scholar 

  • Kambalapally, V.R., and N.C. Rajapakse. 1998. Spectral filters effect growth, flowering and post harvest quality of Easter lilies. Hortscience 33: 1028–1029.

    Google Scholar 

  • Khattak, A.M., and S. Pearson. 2006. Spectral filters and temperature effects on the growth and development of chrysanthemums under low light integral. Plant Growth Regulation 49: 61–68.

    Article  CAS  Google Scholar 

  • Kouwenhoven, J.K. 1970. Yield, grading and distribution of potatoes in ridges in relation to planting depth and ridge size. Potato Research 13: 59–77.

    Article  Google Scholar 

  • Kozukue, N., and S. Mizuno. 1990. Effects of light exposure and storage temperature on greening and glycoalkaloid content in potato tubers. Journal of the Japanese Society for Horticultural Science 59: 673–677.

    Article  CAS  Google Scholar 

  • Larsen, E.C. 1949. Investigations on cause and prevention of greening of potato tubers. Idaho Agricultural Experiment Station Research Bulletin. No. 16.

  • Lewis, W.C., and R.G. Rowberry. 1973. Some effects of planting depth and time and height of hilling on Kennebec and Sebago potatoes. American Journal of Potato Research 12: 8–12.

    Google Scholar 

  • Liebers, M., B. Grübler, F. Chevalier, S. Lerbs-Mache, L. Merendino, R. Blanvillain, and T. Pfannschmidt. 2017. Regulatory shifts in plastid transcription play a key role in morphological conversions of plastids during plant development. Frontiers in Plant Science 8: 23. https://doi.org/10.3389/fpls.2017.00023.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liljemark, A., and E. Widoff. 1960. Greening and solanine development of white potatoes in various types of consumer packages. American Journal of Potato Research 28: 589–602.

    Google Scholar 

  • Lopez-Juez, E. 2007. Plastid biogenesis, between light and shadows. Journal of Experimental Botany 58: 11–26.

    Article  CAS  PubMed  Google Scholar 

  • Lorenz, O.A. 1945. Effect of planting depth on yield and tuber set of potatoes 22: 343–349.

  • Lutz, M., and H. Findlen. 1951. Quality of Red River valley potatoes in various types of consumer packages. American Journal of Potato Research 28: 589–602.

    Article  Google Scholar 

  • Maga, J.A. 1994. Glycoalkaloids. Food Reviews International 10: 385–418.

    Article  CAS  Google Scholar 

  • Martin, S.K., and R.L. Sheppard. 1983. Effect of different packaging materials and light exposure times on chlorophyll concentration in 2 cultivars of potato. New Zealand. Journal of Experimental Agriculture 11: 63–38.

    Article  CAS  Google Scholar 

  • Morris, S.C., and T.H. Lee. 1984. The toxicity and teratogenicity of Solanaceae glycoalkaloids, particularly those of the potato (Solanum tuberosum): A review. Food Technology Australia 36: 118–124.

    CAS  Google Scholar 

  • Mosley, A.R. 1975a. Effects of planting depth and seed type on potato response to plant population. Research summary - Ohio Agricultural Research and Development Centre 81: 29–30.

    Google Scholar 

  • Mosley, A.R. 1975b. Effects of planting depth and seed piece treatment on yield and quality of Kennebec potatoes on muck soil. Research summary - Ohio Agricultural Research and Development Centre 81: 31–33.

    Google Scholar 

  • Moursi, M.A. 1953. The effect of depth of planting on germination, level of tuber formation and yield of the potato crop. American Journal of Potato Research 30: 242–246.

    Article  Google Scholar 

  • Muraja-Fras, J., M. Krsnik-Rasol, and M. Wrischer. 1994. Plastid transformation in greening potato tuber tissue. Journal of Plant Physiology 144: 8–63.

    Article  Google Scholar 

  • Muraja-Ljubičić, J., M. Wrischer, and N. Ljubešić. 1999. Influence of the herbicides Amitrole and norflurazon on greening of illuminated potato microtubers. Zeitschrift für Naturforschung 54: 333–336.

    Google Scholar 

  • Naeem, M., I.J. Tetlow, and M.J. Emes. 1997. Starch synthesis in amyloplasts purified from developing potato tubers. Plant Journal 11: 101–109.

    Article  Google Scholar 

  • Nema, P., N. Ramayya, E. Duncan, and K. Niranjan. 2008. Potato glycoalkaloids: Formation and strategies for mitigation. Journal of the Science of Food and Agriculture 88: 1869–1881.

    Article  CAS  Google Scholar 

  • Novy, R., B. Schneider, M. Fristad, L. Schroeder, J. Stark, and J. Kuhl. 2017. Introgression of resistance to tuber greening from Solanum Microdontum into cultivated potato. Proceedings of the 2017 Potato Association of America annual meeting.

  • Olsen, N.L., T. Brandt, and W.J. Price. 2017. The impact of retail light source on greening of russet Burbank potato tubers. American Journal of Potato Research. 95: 123–129. https://doi.org/10.1007/s12230-017-9616-y.

    Article  Google Scholar 

  • Omayio, D., G. Abong, and M. Okoth. 2016. A review of occurrence of glycoalkaloids in potato and potato products. Current Research in Nutrition and Food Science 4: 195–202.

    Article  Google Scholar 

  • Ostry, V., J. Ruprich, and J. Skarkova. 2010. Glycoalkaloids in potato tubers: The effect of peeling and cooking in salted water. Acta Alimentaria 39: 130–135.

    Article  CAS  Google Scholar 

  • Parfitt, D.E., and S.J. Peloquin. 1981. The genetic basis for tuber greening in 24-chromosome potatoes. American Potato Journal 58: 299–304.

    Article  Google Scholar 

  • Patil, B.C., D.K. Salunkhe, and B. Singh. 1971. Metabolism of solanine and chlorophyll in potato tubers as affected by light and specific chemicals. Journal of Food Science 36: 474–476.

    Article  CAS  Google Scholar 

  • Pavek, M.J., and R.E. Thornton. 2009. Planting depth influences potato plant morphology and economic value. American Journal of Potato Research 86: 56–67.

    Article  Google Scholar 

  • Percival, G. 1999. Light-induced glycoalkaloid accumulation of potato tubers (Solanum tuberosum L). Journal of the Science of Food and Agriculture 79: 1305–1310.

    Article  CAS  Google Scholar 

  • Petermann, J.B., and S.C. Morris. 1985. The spectral responses of chlorophyll and Glycoalkaloid synthesis in potato tubers (Solanum Tuberosum). Plant Science 39: 105–110.

    Article  CAS  Google Scholar 

  • Poapst, P.A., and F.R. Forsyth. 1973. The role of internally produced carbon dioxide in the prevention of greening in potato tubers. Symposium on vegetable storage. Acta Horticulturae 38: 277–290.

    Google Scholar 

  • Potato Genome Sequencing Consortium. 2011. Genome sequence and analysis of the tuber crop potato. Nature 475: 189–195.

    Article  Google Scholar 

  • Prsa, I., F. Stampar, D. Vodnik, and R. Veberic. 2007. Influence of nitrogen on leaf chlorophyll content and photosynthesis of ‘golden delicious’ apple. Acta Agriculturae Scandinavica Section B-Soil and Plant Science 57: 283–289.

    Article  CAS  Google Scholar 

  • Pyke, K. 2007. Plastid biogenesis and differentiation. Topics in Current Genetics 19: 1–28.

    Article  CAS  Google Scholar 

  • Rajapakse, N.C., R.E. Young, M.J. McMahon, and R. Oi. 1999. Plant height control by photoselective filters: Current status and future prospects. HortTechnology 9: 618–624.

    Google Scholar 

  • Ramaswarmy, N.K., and P.M. Nair. 1974. Temperature and light dependency of chlorophyll synthesis in potatoes. Plant Science Letters 2: 249–256.

    Article  Google Scholar 

  • Reeves, A.F. 1988. Varietal differences in potato tuber greening. American Journal of Potato Research 65: 651–658.

    Article  Google Scholar 

  • Rosenfeld, H.J., H.A. Sundell, P. Lea, and M. Ringstad. 1995. Influence of packaging materials and temperature on the glycoalkaloid content of potato tubers. Food Research International 28: 481–484.

    Article  CAS  Google Scholar 

  • Schwimmer, S., and W.J. Weston. 1958. Chlorophyll formation in potato tubers as influenced by gamma irradiation and by chemicals. American Journal of Potato Research 35: 534–542.

    Article  CAS  Google Scholar 

  • Sinden, S.L. 1971. Control of potato greening with household detergents. American Journal of Potato Research 48: 53–56.

    Article  CAS  Google Scholar 

  • Smith, D.B., J.G. Roddick, and J.L. Jones. 1996. Potato glycoalkaloids: Some unanswered questions. Trends in Food Science & Technology 7: 126–131.

    Article  CAS  Google Scholar 

  • Stalham, M.A., J.H. Fowler, and M.J. Pavek. 2001. Effect of planting depth and re-ridging on crop growth and tuber greening in FL 1953. Cambridge University Potato Growers Research Association Annual Report 16–21.

  • Storey, R.M.J., and H.V. Davies. 1992. Tuber quality. In The potato crop. ed. P.M. Harris, 507-569. London: Chapman & Hall.

  • Valkonen, J.P.T., M. Keskitalo, T. Vasara, L. Pietilä, and K.V. Raman. 1996. Potato glycoalkaloids: A burden or a blessing? Critical Reviews in Plant Sciences 15: 1–20.

    Article  CAS  Google Scholar 

  • Van der Merwe, L. 2016. Most important reasons for downgradings on markets for certain regions – 2015/2016. CHIPS November/December 2016: 42-48. Potatoes South Africa. http://www.potatoes.co.za/media-events/chips/chips-november/december-2016.aspx. Accessed 8 February 2017.

  • Van Haeringen, C.J., J.S. West, F.J. Davis, A. Gilbert, P. Hadley, S. Pearson, A.E. Wheldon, and R.G.C. Henbest. 1998. The development of solid spectral filters for the regulation of plant growth. Photochemistry and Photobiology 67: 407–413.

    Article  Google Scholar 

  • Virgin, H.I., and C. Sundqvist. 1992. Pigment formation in potato tubers (Solanum tuberosum) exposed to light followed by darkness. Physiologia Plantarum 86: 587–592.

    Article  CAS  Google Scholar 

  • Wilson, M.D., R.A. Stanley, A. Eyles, and T. Ross. 2017. Innovative processes and technologies for packaging of fresh fruit and vegetables: A review. Critical Reviews in Food Science and Nutrition.: 1–12. https://doi.org/10.1080/10408398.2017.1375892.

  • Wu, M.T., and D.K. Salunkhe. 1972a. Control of chlorophyll and solanine synthesis and sprouting of potato tubers by hot paraffin wax. Journal of Food Science 37: 629–630.

    Article  CAS  Google Scholar 

  • Wu, M.T., and D.K. Salunkhe. 1972b. Inhibition of chlorophyll and solanine formation, and sprouting of potato tubers by oil dipping. Journal of the American Society for Horticultural Science 97: 614–616.

    Google Scholar 

  • Wu, M.T., and D.K. Salunkhe. 1972c. Control of chlorophyll and solanine formation in potato tubers by oil and diluted oil treatments. Hortscience 7: 466–467.

    CAS  Google Scholar 

  • Wu, M.T., and D.K. Salunkhe. 1975. Effects of vacuum packaging on light induced greening and glyeoalkaloid formation of potato tubers. Canadian Institute of Food Science and Technology Journal 8: 185–187.

    Article  CAS  Google Scholar 

  • Yamaguchi, M., D.L. Hughes, and F.D. Howard. 1960a. Effect of color and intensity of fluorescent lights and application of chemical and waxes on chlorophyll development of white rose potatoes. American Journal of Potato Research 37: 229–236.

    Article  CAS  Google Scholar 

  • Yamaguchi, M., D.L. Hughes, and F.D. Howard. 1960b. Effect of season, storage temperature, and temperature during light exposure on chlorophyll accumulation of white rose potatoes. Journal of the American Society for Horticultural Science 75: 529–536.

    CAS  Google Scholar 

  • Zhu, Y.S., D.L. Merkle-Lehman, and S.D. Kung. 1984. Light-induced transformation of amyloplasts into chloroplasts in potato tubers. Plant Physiology 75: 142–145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler, R., S.H. Schanderl, and P. Markakis. 1968. Gamma irradiation and enriched CO2 atmosphere storage effects on the light-induced greening of potatoes. Journal of Food Science 33: 533–535.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Australian Research Council’s Industrial Transformation Training Centres scheme under Grant IC140100024. ST is the recipient of a tuition fee scholarship from the University of Tasmania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Calum Wilson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanios, S., Eyles, A., Tegg, R. et al. Potato Tuber Greening: a Review of Predisposing Factors, Management and Future Challenges. Am. J. Potato Res. 95, 248–257 (2018). https://doi.org/10.1007/s12230-018-9648-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-018-9648-y

Keywords

Navigation