Advertisement

American Journal of Potato Research

, Volume 95, Issue 5, pp 463–472 | Cite as

Effect of Teflubenzuron Ingestion on Larval Performance and Chitin Content in Leptinotarsa decemlineata

  • Qing-Wei Meng
  • Jing-Jing Wang
  • Ji-Feng Shi
  • Wen-Chao Guo
  • Guo-Qing Li
Article
  • 96 Downloads

Abstract

The potential of teflubenzuron was assessed in a series of laboratory studies in order to achieve consistent, long-term, integrated management of the Colorado potato beetle, Leptinotarsa decemlineata (Say). Teflubenzuron exhibited excellent stomach toxicity to the larvae. Its larvicidal activity was comparable with those of cyhalothrin, chlorantraniliprole and spinosad. Moreover, the teflubenzuron-fed larvae consumed less foliage, grew slower, and needed a longer period to develop, in a dose dependent manner. Most of these larvae died during larval-larval molting, larval-pupal ecdysis or adult emergence. Furthermore, chitin contents in body carcass (without midgut) and integument specimen of the teflubenzuron-fed larvae significantly decreased, whereas the chitin amount in the midgut peritrophic matrix was not affected. In addition, uridine diphosphate-N-acetylglucosamine-pyrophosphorylase gene (LdUAP1), which was mainly responsible for chitin biosynthesis in ectodermally-derived tissues, was suppressed after teflubenzuron ingestion, in contrast to its partner LdUAP2 for chitin formation in the midgut peritrophic matrix. In a word, by inhibition of chitin production in ectodermally-derived tissues, teflubenzuron is an effective benzoylurea insecticide to L. decemlineata larvae. It can be a valuable tool in effective integrated pest management and insecticide resistance management programs against L. decemlineata.

Keywords

Larvicide Pupation Uridine diphosphate-N-acetylglucosamine- pyrophosphorylase Ectodermally-derived tissues 

Resumen

Para lograr el manejo integral consistente, a largo plazo, del escarabajo de la papa de Colorado, Leptinotarsa decemlineata (Say), se evalúa el potencial de teflubenzuron en el laboratorio. El producto exhibió excelente toxicidad estomacal en la larva. Su actividad larvicida fue comparable con la de cyhalothrin, chlorantraniliprole y spinosad. Observamos los efectos negativos de la ingestión de teflubenzuron en la larva. La larva alimentada con este producto consumió menos follaje, creció más lentamente, y tuvo un período más largo para su desarrollo de una manera dosis dependiente. La mayoría de estas larvas murieron durante la muda larva-larva, larva-ecdicis pupal, o emergencia de adulto. Aún más., los contenidos de quitina en el cuerpo (sin el intestino medio) y el integumento del espécimen de la larva resultante disminuyeron significativamente, mientras que no se afectó la cantidad de quitina en la matriz peritrófica en el intestino medio. Adicionalmente, el gen uridina difosfato-N-acetilglucosamina-pirofosforilasa (LdUAP1) que fue el principalmente responsable de la biosíntesis de quitina en tejidos derivados ectodermalmente, fue suprimido después de la ingestión de teflubenzuron, en contraste a su complemento LdUAP2 para la formación de quitina en la matriz peritrófica del intestino medio. En una palabra, mediante la inhibición de la formación de quitina, teflubenzuron puede ser una herramienta valiosa en programas efectivos de IPM contra L. decemlineata.

Notes

Acknowledgments

This research was supported by China Agriculture Research System (CARS-09-P22), the National Natural Science Foundation of China (31272047 and 31360442), and the Fundamental Research Funds for the Central Universities (KYTZ201403).

References

  1. Abbott, W. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265–267.CrossRefGoogle Scholar
  2. Alyokhin, A. 2009. Colorado potato beetle management on potatoes: Current challenges and future prospects. Fruit, Vegetable and Cereal Science and. Biotechnology 3: 10–19.Google Scholar
  3. Alyokhin, A., M. Baker, D. Mota-Sanchez, G. Dively, and E. Grafius. 2008. Colorado potato beetle resistance to insecticides. American Journal of Potato Research 85: 395–413.CrossRefGoogle Scholar
  4. Arakane, Y., S. Muthukrishnan, K.J. Kramer, C.A. Specht, Y. Tomoyasu, M.D. Lorenzen, M. Kanost, and R.W. Beeman. 2005. The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix. Insect Molecular Biology 14: 453–463.CrossRefPubMedGoogle Scholar
  5. Arakane, Y., M.C. Baguinon, S. Jasrapuria, S. Chaudhari, A. Doyungan, K.J. Kramer, S. Muthukrishnan, and R.W. Beeman. 2011. Both UDP N-acetylglucosamine pyrophosphorylases of Tribolium castaneum are critical for molting, survival and fecundity. Insect Biochemistry and Molecular Biology 41: 42–50.CrossRefPubMedGoogle Scholar
  6. Bettini, S., M. Boccacci, and G. Natalizi. 1958. A comparative study on the speed of action of some halogen-containing thiol alkylating agents on resistant house flies. Journal of Economic Entomology 51: 880–882.CrossRefGoogle Scholar
  7. Boina, D.R., and J.R. Bloomquist. 2015. Chemical control of the Asian citrus psyllid and of huanglongbing disease in citrus. Pest Management Science 71: 808–823.CrossRefPubMedGoogle Scholar
  8. Bustin, S.A., V. Benes, J.A. Garson, J. Hellemans, J. Huggett, M. Kubista, R. Mueller, T. Nolan, M.W. Pfaffl, G.L. Shipley, J. Vandesompele, and C.T. Wittwer. 2009. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry 55: 611–622.CrossRefPubMedGoogle Scholar
  9. Campbell, F. 1926. Speed of toxic action of arsenic in the silkworm. Journal of General Physiology 9: 433–443.CrossRefPubMedGoogle Scholar
  10. Campbell, P.J., K.L. Hammell, I.R. Dohoo, and G. Ritchie. 2006. Randomized clinical trial to investigate the effectiveness of teflubenzuron for treating sea lice on Atlantic salmon. Diseases of Aquatic Organisms 70: 101–108.CrossRefPubMedGoogle Scholar
  11. Casagrande, R.A. 1987. The Colorado potato beetle: 125 years of mismanagement. Bulletin of the Entomological Society of America 33: 142–150.CrossRefGoogle Scholar
  12. Chang, S.-C. 1952. The speed of toxic action on the pea aphid of several insecticides. Journal of Economic Entomology 45: 370–372.CrossRefGoogle Scholar
  13. Clarke, B.S., and P.J. Jewess. 1990. The inhibition of chitin synthesis in Spodoptera littoralis larvae by flufenoxuron, teflubenzuron and diflubenzuron. Pesticide Science 28: 377–388.CrossRefGoogle Scholar
  14. Clinch, P., and J. Ross. 1970. Laboratory assessment of the speed of action on honey bees of orally dosed insecticides. New Zealand Journal of Agricultural Research 13: 717–725.CrossRefGoogle Scholar
  15. Cohen, E. 1987. Chitin biochemistry: Synthesis and inhibition. Annual Review of Entomology 32: 71–93.CrossRefGoogle Scholar
  16. Coppen, G.D.A., and P.C. Jepson. 1996a. Comparative laboratory evaluation of the acute and chronic toxicology of diflubenzuron, hexaflumuron and teflubenzuron against II instar desert locust (Schistocerca gregaria) (Orthoptera: Acrididae). Pesticide Science 46: 183–190.CrossRefGoogle Scholar
  17. Coppen, G.D.A., and P.C. Jepson. 1996b. The effects of the duration of exposure on the toxicity of diflubenzuron, hexaflumuron and teflubenzuron to various stages of II instar Schistocerca gregaria. Pesticide Science 46: 191–197.CrossRefGoogle Scholar
  18. Cutler, G.C., C.D. Scott-Dupree, J.H. Tolman, and C.R. Harris. 2005. Acute and sublethal toxicity of novaluron, a novel chitin synthesis inhibitor, to Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Pest Management Science 61: 1060–1068.CrossRefPubMedGoogle Scholar
  19. Douris, V., D. Steinbach, R. Panteleri, I. Livadaras, J. A. Pickett, T. Van Leeuwen, R. Nauen and J. Vontas. 2016. Resistance mutation conserved between insects and mites unravels the benzoylurea insecticide mode of action on chitin biosynthesis. Proceedings of the National Academy Sciences of the United States of America 113:14692–14697.Google Scholar
  20. Erler, F., E. Polat, H. Demir, M. Catal, and G. Tuna. 2011. Control of mushroom sciarid fly Lycoriella ingenua populations with insect growth regulators applied by soil drench. Journal of Economic Entomology 104: 839–844.CrossRefPubMedGoogle Scholar
  21. Fisk, T., and D.J. Wright. 1992a. Response of Spodoptera exempta (walk.) larvae to simulated field spray applications of acylurea insect growth regulators with observations on cuticular uptake of acylureas. Pesticide Science 35: 321–330.CrossRefGoogle Scholar
  22. Fisk, T., and D.J. Wright. 1992b. Speed of action and toxicity of acylurea insect growth regulators against Spodoptera exempta (walk.) and Spodoptera littoralis (Boisd.) larvae: Effect of inter-moult age. Pesticide Science 35: 331–337.CrossRefGoogle Scholar
  23. Grosscurt, A.C. 1978a. Diflubenzuron: Some aspects of its ovicidal and larvicidal mode of action and an evaluation of its practical possibilities. Pesticide Science 9: 373–386.CrossRefGoogle Scholar
  24. Grosscurt, A.C. 1978b. Effect of diflubenzuron on mechanical penetrability, chitin formation, and structure of the elytra of Leptinotarsa decemlineata. Journal of Insect Physiology 24: 827–831.CrossRefGoogle Scholar
  25. Hannig, G.T., M. Ziegler, and P.G. Marçon. 2009. Feeding cessation effects of chlorantraniliprole, a new anthranilic diamide insecticide, in comparison with several insecticides in distinct chemical classes and mode-of-action groups. Pest Management Science 65: 969–974.CrossRefPubMedGoogle Scholar
  26. Ishaaya, I. 1990. Benzoylphenyl ureas and other selective control agents - mechanism and application. In Pesticides and Alternatives, J. E. Casida (Ed.) Elsevier, pp, 365–376.Google Scholar
  27. Ismail, F., and D.J. Wright. 1992. Synergism of teflubenzuron and chlorfluazuron in an acylurea-resistant field strain of Plutella xylostella L. (lepidoptera: Yponomeutidae). Pesticide Science 34: 221–226.CrossRefGoogle Scholar
  28. Jiang, W.-H., Z.-T. Wang, M.-H. Xiong, W.-P. Lu, P. Liu, W.-C. Guo, and G.-Q. Li. 2010. Insecticide resistance status of Colorado potato beetle (Coleoptera: Chrysomelidae) adults in northern Xinjiang Uygur autonomous region. Journal of Economic Entomology 103: 1365–1371.CrossRefPubMedGoogle Scholar
  29. Jiang, W.-H., W.-C. Guo, W.-P. Lu, X.-Q. Shi, M.-H. Xiong, and G.-Q. Li. 2011. Target site insensitivity mutations in the AChE and LdVssc1 confer resistance 3 to pyrethroids and carbamates in Leptinotarsa decemlineata in northern 4 Xinjiang Uygur autonomous region. Pesticide Biochemistry and Physiology 100: 74–81.CrossRefGoogle Scholar
  30. Jiang, W.-H., W.-P. Lu, W.-C. Guo, Z.-H. Xia, W.-J. Fu, and G.-Q. Li. 2012. Chlorantraniliprole susceptibility in Leptinotarsa decemlineata in the North Xinjiang Uygur autonomous region in China. Journal of Economic Entomology 105: 549–554.CrossRefPubMedGoogle Scholar
  31. Van Leeuwen, T., P. Demaeght, E. J. Osborne, W. Dermauw, S. Gohlke, R. Nauen, M. Grbic, L. Tirry, H. Merzendorfer and R. M. Clark. 2012. Population bulk segregant mapping uncovers resistance mutations and the mode of action of a chitin synthesis inhibitor in arthropods. Proceedings of the National Academy Sciences of the United States of America 109: 4407–4412.Google Scholar
  32. Liu, X., F. Li, D. Li, E. Ma, W. Zhang, K.Y. Zhu, and J. Zhang. 2013. Molecular and functional analysis of UDP-N-acetylglucosamine pyrophosphorylases from the migratory locust, Locusta migratoria. PLoS One 8: e71970.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lu, W.-P., X.-Q. Shi, W.-C. Guo, W.-H. Jiang, Z.-H. Xia, W.-J. Fu, and G.-Q. Li. 2011. Susceptibilities of Leptinotarsa decemlineata (say) in the North Xinjiang Uygur autonomous region in China to two biopesticides and three conventional insecticides. Journal of Agricultural and Urban Entomology 27: 61–73.CrossRefGoogle Scholar
  34. Malinowski, H. and M. Pawinska. 1992. Comparative evaluation of some chitin synthesis inhibitors as insecticides against Colorado potato beetle Leptinotarsa decemlineata (say). Pesticide Science 35: 349–353.Google Scholar
  35. Merzendorfer, H., H.S. Kim, S.S. Chaudhari, M. Kumari, C.A. Specht, S. Butcher, S.J. Brown, J. Robert Manak, R.W. Beeman, K.J. Kramer, and S. Muthukrishnan. 2012. Genomic and proteomic studies on the effects of the insect growth regulator diflubenzuron in the model beetle species Tribolium castaneum. Insect Biochemistry and Molecular Biology 42: 264–276.CrossRefPubMedGoogle Scholar
  36. Mulder, R., and M.T. Gijswijk. 1973. The laboratory evaluation of two promising new insecticides which interefere with cuticle formation. Pesticide Science 4: 737–745.CrossRefGoogle Scholar
  37. Neumann, R., and W. Guyer. 1987. Biochemical and toxicological differences in the modes of action of the benzoylureas. Pesticide Science 20: 147–156.CrossRefGoogle Scholar
  38. Reissig, J.L., J.L. Strominger, and L.F. Leloir. 1955. A modified colorimetric method for the estimation of N-acetylamino sugars. Journal of Biological Chemistry 217: 959–966.PubMedGoogle Scholar
  39. Shang, F., Y. Xiong, W.-K. Xia, D.-D. Wei, D. Wei, and J.-J. Wang. 2016. Identification, characterization and functional analysis of a chitin synthase gene in the brown citrus aphid, Toxoptera citricida (Hemiptera, Aphididae). Insect Molecular Biology 25: 422–430.CrossRefPubMedGoogle Scholar
  40. Shi, X.-Q., M.-H. Xiong, W.-H. Jiang, Z.-T. Wang, W.-C. Guo, Z.-H. Xia, W.-J. Fu, and G.-Q. Li. 2012. Efficacy of endosulfan and fipronil and joint toxic action of endosulfan mixtures against Leptinotarsa decemlineata (say). Journal of Pest Science 85: 519–526.CrossRefGoogle Scholar
  41. Shi, X.-Q., W.-C. Guo, P.-J. Wan, L.-T. Zhou, X.-L. Ren, A. Tursun, K.-Y. Fu, and G.-Q. Li. 2013. Validation of reference genes for expression analysis by quantitative real-time PCR in Leptinotarsa decemlineata (say). BMC Research Notes 6: 93.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Shi, J.-F., J. Fu, L.-L. Mu, W.-C. Guo, and G.-Q. Li. 2016a. Two Leptinotarsa uridine diphosphate N-acetylglucosamine pyrophosphorylase genes LdUAP1 and LdUAP2 are specialized for synthesis of chitin in larval epidermal cuticle and midgut peritrophic matrix. Insect Biochemistry and Molecular Biology 68: 1–12.CrossRefPubMedGoogle Scholar
  43. Shi, J.-F., L.-L. Mu, W.-C. Guo, and G.-Q. Li. 2016b. Identification and hormone induction of putative chitin synthase genes and splice variants in Leptinotarsa decemlineata (say). Archives of Insect Biochemistry and Physiology 92: 242–258.CrossRefPubMedGoogle Scholar
  44. Xia, W.K., T.B. Ding, J.Z. Niu, C.Y. Liao, R. Zhong, W.J. Yang, B. Liu, W. Dou, and J.J. Wang. 2014. Exposure to diflubenzuron results in an up-regulation of a chitin synthase 1 gene in citrus red mite, Panonychus citri (Acari: Tetranychidae). International Journal of Molecular Sciences 15: 3711–3728.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Zhang, J.Z., and K.Y. Zhu. 2006. Characterization of a chitin synthase cDNA and its increased mRNA level associated with decreased chitin synthesis in Anopheles quadrimaculatus exposed to diflubenzuron. Insect Biochemistry and Molecular Biology 36: 712–725.CrossRefPubMedGoogle Scholar
  46. Zhang, X., J.Z. Zhang, Y. Park, and K.Y. Zhu. 2012. Identification and characterization of two chitin synthase genes in African malaria mosquito, Anopheles gambiae. Insect Biochemistry and Molecular Biology 42: 674–682.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Potato Association of America 2018

Authors and Affiliations

  • Qing-Wei Meng
    • 1
  • Jing-Jing Wang
    • 1
  • Ji-Feng Shi
    • 1
  • Wen-Chao Guo
    • 2
  • Guo-Qing Li
    • 1
  1. 1.Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
  2. 2.Department of Plant ProtectionXinjiang Academy of Agricultural SciencesUrumqiChina

Personalised recommendations